Simulation Components in the Open Reflective
Component Architecture

H.Hadler, J.Treibig, M.Kellner, T.Jung
horst.hadler@informatik.uni-erlangen.de
*Department of Computer Graphics, University Erlangen-Nuremberg
Am Weichselgarten 9, 91058 Erlangen-Tennenlohe
tDepartment of System Simulation, University Erlangen-Nuremberg
fDepartment of Material Science 6, University Erlangen-Nuremberg
*Crystal Growth Laboratory, Fraunhofer Institute 11SB

Abstract

The Open Reflective Component Architecture (ORCAN) framework [2] is a collection of
C++ libraries for building applications from run-time interchangeable components. It has
been developed as part of a software system for the simulation of the heat transfer inside
crystal growth furnaces and is primarily designed to assist a longterm distributed software
development process. The software is using so-ca#fldctive componentd] for the
constitutive parts of the application. While reflective component frameworks are usually
based upon interpreted programming languages, ORCAN is completely C++ based. The
base component system is contained within a single, portable library that is available for
all standard platforms. It is designed to be used with as little ‘programming overhead’ as
possible and introduces an interface design that enables the software developer to change
and exchange parts of the software without side effects.

While the framework itself can be used for arbitrary applications, a set of components
named ORCAN/Sim has been defined to be used for standard simulation purposes. They
decompose the simulation process into a set of inter-operating parts, each providing a spe-
cific functionality. Existing components provide mesh management, grid generation, linear
equation solving, coupling, data visualization, etc. The development process is made up of
connecting and configuring existing components and of introducing new component imple-
mentations when required by the simulation.

1 ORCAN/SIm

Components can be viewed as a means to decompose a complex computational model into
manageable parts. The use of reflective components enforces the developer to think of the
model’s parts as replaceable entities. They can be added, removed and exchanged with
respect to the problem being solved, the hardware available or the accuracy required. In the
following the utilization of ORCAN/Sim’s components is presented.

One principle of component-based applications can be described as "What You Need
Is What You Get”, meaning an application will at runtime acquire exactly the component



Component Network | Application

gReader % Mesh —E‘S\mu\atmn—g Mesh

¢
J L
ORCAN Framework |
component tools and user
handling helpers interface

Figure 1: structure of application built from network of ORCAN/Sim components

implementations that it needs to perform its task. To do so, in contrast to conventional
applications, two steps have to be performed: first, a component implementation has to be
acquired and second, arterface quenhas to be performed, in which the implementation is
gueried for the functions needed by the application. The first step is delegated to a so-called
brokerwhich - from the application’s point of view - creates an object that is used to access
the component implementation. In the second step this object is used for the acquisition
of interfaces, i.e. a set of functions, that can be called by other components or the main
application to perform the requested task.

Likewise to conventional applications, the interface design of the program’s modules
is crucial to its maintainability and extensibility. In ORCAN/Sim each component’s inter-
face is naturally split into a generic part that is used to manage all parts that are likely to
differ between implementations of the same component type and a fixed part defining the
functionality common to all possible implementations. For example different grid gener-
ators for volume meshes can be subsumed to have a fixed interface with three functions.
One function to set the input surface description, one function to specify the output volume
mesh and another function that executes the grid generation process. All other variables and
functions, that are specific to each grid generator implementation, are managed by a generic
interface, that is available to all components by default. This separation enables keeping
the interfaces as general as possible. Many of ORCAN/Sim’s components have compact
'Setlnput, SetOutput, Execustyle interfaces.

An exception to the components with very compact interfaces is the mesh management
component, commonly used by other components for input and output. It stores mesh
topology and data. The mesh component is not based upon a fixed 'per vertex’ or 'per
element’ data layout, but it defines an interface for each possible way of storing data in the
mesh. There is no limitation on the type and number of data that can be stored in the mesh,
as long as a byte-wise copy is possible. For example, to associate a coordinate with each
vertex, the 'vertex attribute’ interface should be used to create an appropriate "3 floats-type
data element. The attribute is assigned a unique identifier. The coordinate of the vertex can
then be accessed using this identifier and the vertex ID.

A simple application, using mesh attributes for component interaction, can be con-
structed as follows (Figure 1): First, the input model is processed by a reader component



to produce a mesh, which is then passed on to a component, actually performing the simu-
lation and storing its results as attributes on the mesh. For feedback the mesh can be input
to a visualization component, allowing all mesh attributes to be displayed using standard
visualization algorithms. Finally the results can be stored using a writer component. An
interactive control of the simulation process is automatically available, as the framework
provides a built-in mechanism for creating a user interface for each component implemen-
tation at run-time. This mechanism is based upon the generic interface.

Init's current configuration ORCAN/Sim defines components for a variety of simulation
sub-tasks, ranging from basic mesh management to material databases. Table 1 shows an
overview of the component types that are available in ORCAN/Sim. The components have
been designed and implemented in parallel by the authors.

Component Function

Geometry geometry management; CAD data processing

SurfMesh surface mesh management; represent surfaces and surface data
VolMesh volume mesh management; represent volumes and volume data
Surf/VoIMeshReader/Writer read/write surface/volume meshes and data

LESSolver solve linear equation systems

PDEDiscretizer numerical solving of a PDE

Radiation radiation solver

Coupling physical correct transmission of data between meshes
OutputContext device abstraction layer for visualization

Visualization visualization of meshes and mesh data

Material & MaterialDB material data & database for material data

VolMeshGen 3D grid generator

Table 1: ORCAN/Sim component types

The framework provides a set of convenience functions and macros for adding new com-
ponent implementations and new component types. To introduce a new implementation, a
class deriving from the component type’s base class has to be defined and to be compiled
into a shared library. This class must also derive from each interface it is offering. The in-
terfaces are defined as standard C++ sets of pure virtual functions. Additionally the macro
OCREGISTERREALIZATION has to be called once, anywhere in the implementation for as-
signing a "footprint” to itself that can at run-time be used by the broker to identify it's type
and name. Likewise the macmCREGISTERINTERFACE has to be called once for every
interface to be able to query the implementation’s functionality at run-time.

Within the main application the framework isolates the user from the details of accessing
the broker for loading and creating component implementations. For examipiesh-
Gen:New() will return avolMeshGenRef oObject encapsulating #oIMeshGen implemen-
tation. The interface query is directly performed with this object, which defines a member
variable for each possible interface of tWelMeshGen component type, initialized with a
non-zero value if it is defined by the implementation.



2 Example: A simulation tool for coupled heat conduction and
radiation

We are developing a software for the simulation of crystal growth processes using 3D mod-
els of crystal growth furnaces. The software is intended to supplement an existing software
package [3] for 2D axisymmetric models. In its present state the simulation process of
the 3D software includes the input and conditioning of CAD data, the generation of un-
structured volume meshes for the volumes forming the furnace, the assignment of material
data and boundary values, the simulation of global heat transfer and the visualization of
simulation data. Each of this sub-tasks is managed by a network of linked ORCAN/Sim
components.

Within the heat transfer simulation network coupled heat conduction and radiation is
computed using a loop-based iterative approach. The default conduction component com-
putes heat transfer by stationary conduction

Vq(£¢ T) =S (1)

with source terms and flux densitieg = —\(7")VT'. It uses a finite element approach to
solve for temperature at the vertices of the finite element mesh, resulting in a linear equation
system, solved by thEESSolver component. In a subsequent step the vertex temperatures
are integrated for each boundary surface element to obtain the emittegf"fluaf each
element. These are input to the heat radiation solver.

The default radiation component computes isotropic surface-to-surface radiation. The
emitted radiative flux of a surface elemeérns given as

¢ = ;o0 AT 0<e <1 (2)

€; is the emissivity,4; the area and = 5.66710~8Wm 2K —* the constant of Stefan-
Boltzmann. The flux leaving elements the sum of the emitted flux and the reflected part
of the incoming flux

g = (1—€)g" + g™ (3)

The incoming fluxg:™ is the sum over the fractions of the out-coming ﬂﬁk’f of all surface
elements; which reach the elemenit The fractions are given by the view-factofs
between each pair of elemeritand;.

4" =" fijad" (4)

J

Basically heat conduction and radiation can be coupled by using a single global solver
matrix for both effects. However, this approach is not feasible for general 3D geometries
because of the&(n?) complexity of surface-to-surface radiation. Therefore the task of
computing radiation is assigned to the radiation component, which may internally use any
method (hierarchical, monte carlo, ...) to compute the radiation in the models cavities. This
requires additional computations, in which the radiation values are transmitted forth and
back between the internal representation and the conduction mesh.



Figure 2: comparison of 2D axisymmetric and 3D computations for axisymmetric model

For coupling between radiation and conduction we are using the surface shared by the
meshes of both solvers for exchanging boundary values in both directions in an iterative
process. Starting with a solution from the conduction component, the matrix and the con-
duction mesh - with the resulting temperatures - are passed on to the radiation component.
With the help of a coupling component, the input temperature values are converted into
emitted flux density values at the surface elements of the radiation mesh. The radiation
component then computes the radiation equilibrium. Finally the net-flux values at the ra-
diation meshes surface elements are transfered to the conduction mesh as boundary values
for the next iteration step and the matrix values are updated. This process is repeated until
convergence i.e. the change in net-flux is below a user-given residual. Because convergence
is slow when conduction and radiation are solved completely independent the radiation
component is designated to make entries into the conduction matrix.

Our approach yields the expected results when compared to axisymmetric reference ex-
amples that can be solved using a single global matrix (Figure 2). It can however be used
for general 3D geometries. The left part of figure 3 shows a cross section of a model of
a Czochralski crystal growth furnace; from top to bottom: pulling rod, seed, crystal, melt,
crucible, surrounded by heater and crucible support. The furnace is modeled from 35 vol-
umes, representing regions of the furnace with different materials. Figure 3 shows the mesh
and the result temperature distribution of a coupled conduction/radiation simulation of the
furnace model. The mesh has a total of 200.000 volume elements and 80.000 surface ele-
ments used in radiation calculation, which results in 6.4 billion possible surface-to-surface
interactions. The total computation time was 2 hours on Pentium 3GHz PC with a total of
300 conduction/radiation iterations.

3 Discussion

ORCANY/Sim provides a set of components for simulation sub-tasks that decompose com-
plex simulation applications. By design, the component based approach implemented by
the ORCAN framework enables the exchangeability of components, the rapid incorpora-
tion of external packages and, compared to conventional applications, an improved software
maintenance. This is because a component implementation is unaware of other component



Figure 3: Czochralski crystal growth furnace and coupled radiation/conduction simulation

implementations, but provides its functionality as a "black box”. It can be developed and
compiled fully self-contained, which is made possible by the decomposition of the compo-
nent’s interface into a fixegeneralpart and a generitmplementation-specifipart. The
component’s fixed interface, which is linking it to other components, can be kept very com-
pact.

The utilization of components does however introduce extra levels of indirection to the
application. Before an interface’s functions can be called, a component implementation has
to be loaded and ainterface quenyjhas to be performed. Furthermore the requested inter-
face may not be available, requiring additional costs in the main application. By employing
components the same data may be held several times in memory. However, as every simu-
lation component creates its own internal data structure - regardless of other program parts
- it can do so in the most efficient way.

The ORCAN framework and most of the ORCAN/Sim component implementations can
be downloaded fronhttp://sourceforge.net/projects/orcan.

4 Acknowledgements

This work was supported by the German Federal Ministry of Education and Research
(BMBF) Grant Number 0327324A.

References

[1] C. Szyperski’*Component Software, Second Edition”, New York, Pearsons Education Lim-
ited, 2002.

[2] H. Hadler, M. Kellner, R. Grosso’A Reflective Component Framework for a Large Scale
Simulation Software”, ECTS2004 Proceedings, Lisbon, Portugal, 2004.

[3] M. Kurz: "Development of CrysVUn++, a Software System for Numerical Modelling and
Control of Industrial Crystal Growth Processes”, Dissertation, Erlangen, 1998.



	ORCAN/Sim
	Example: A simulation tool for coupled heat conduction and radiation
	Discussion
	Acknowledgements

