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Abstract

The functional transformation method is a elegant mathematical approach for the so-
lution of partial differential equations and has been so far successfully applied in dig-
ital sound synthesis for the simulation of string and percussion instruments. Based on
suitable integral transformations, the problem is solved analytically in both, time and
space frequency domain. Discretization and inverse transformation yields a discrete
algorithm, implementable in any computer hardware. In this paper the functional trans-
formation method is used for the simulation of three-dimensional (3D) wave propaga-
tion. With the help of a multi-dimensional fast Fourier transform, the complete wave
field can be evaluated and visualized very efficiently. A program is demonstrated which
simulates a 90m3 room with an audio bandwidth of 5kHz at 5 images per second on
current PC-hardware. The algorithm is compared with classical simulation techniques
both in computational complexity and accuracy.

1 Introduction

The simulation of acoustical wave fields is a growing area of application, on one hand
facilitated by the increasing computational power of modern hardware and on the other
hand demanded by room acoustics research. Especially for the upcoming multi-channel
reproduction techniques like wave field synthesis [BVV93], simulations are required to
validate the output of the system and to ease further research.
Typical methods from literature for the simulation of acoustical wave fields are the finite
difference time domain (FDTD) method [SRT94], waveguide meshes [LV00], and the mir-
ror image method [FHLB99]. However, the first two methods are based on the spatial dis-
cretization of the modeled wave field, what yields undesired dispersion effects. The mirror
image method is based on acoustical rays, what is only accurate for high frequencies. It is
usually applied to achieve room impulse responses and is not suitable for the simulation of
complete wave fields.
Therefore, in this paper a new approach is presented, where the functional transforma-
tion method (FTM) [TR03] is applied for the simulation of 3D acoustical wave fields.
In doing so the mathematical model of wave propagation in terms of a partial differen-
tial equation (PDE) with suitable initial- and boundary- conditions is solved analytically�
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in the frequency domain. Using simple geometries, which can be connected together to
complex models with methods described in [PR05b], one can take advantage of highly ef-
ficient implementations via a three-dimensional FFT (see [PR05a] for the corresponding
2D implementation), yielding a fast and accurate tool for the simulation and visualization
of acoustical wave fields.
The paper is organized as follows: in section 2 the simulation of acoustical wave fields
with the FTM is described in brief. Referencing the existing 2D implementation [PR05a],
some special aspects of the 3D implementation from this paper are given in detail. Section 3
presents the implementation of this algorithm in the program “Wave3D”. Simulation results
and a performance comparison with other methods are given. Section 4 concludes this
paper.

2 Simulation of Wave Propagation with the
Functional Transformation Method

The proposed method is a 3D-expansion of the 2D algorithm described in [PR05a]. There-
fore only a brief overview is given here.

2.1 The Physical Model

The simulation of acoustical wave fields is based on the following physical principles
(see [RF04] for instance) which relate the differential acoustic pressure p(~x, t) and the
differential particle velocity ~v(~x, t) by the first order PDEs
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where c is the speed of sound and %0 is the mass density of air. Both, the divergence of
the particle velocity and the gradient of the pressure are described by the nabla-operator
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(~e1, ~e2, and ~e3 are the Cartesian unit vectors). Both equations (1) can be easily combined
to the first order vector PDE
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with fe(~x, t) denoting an arbitrary excitation, a distribution of loudspeakers for instance. To
complete the model initial conditions and boundary conditions are required. For simplicity
initial conditions are assumed to be homogeneous, i.e. y(~x, 0) � 0. To define the boundary
conditions first of all the model geometry is needed.
The FTM can handle any geometry, however it may turn out difficult to solve the eigen-
value problem needed for the integral transformation with respect to space (see [TR03]).



Furthermore, the efficient FFT implementations from [PR05a] require separable boundary
conditions (i.e. rectangular regions in Cartesian coordinates or circular regions in polar co-
ordinates). Therefore a different approach as described in [PR05b] is chosen: complex room
models are broken into several sub-model with simple geometry. These models are solved
separately with the FTM and are reconnected in the discrete system via the interaction of
their boundary conditions.
Therefore, in this paper as a simple but nonetheless useful geometry, a cube with size
l1 � l2 � l3 is chosen. Furthermore the boundaries are assumed to be perfectly reflecting,
i.e. the normal component of the particle velocity at the boundary is zero.

2.2 Application of the Functional Transformation Method

The FTM starts from the problem description derived in the previous section 2.1 and solves
it analytically in the frequency domain with the help of several integral transformations.
The Laplace transformation (

�������
) yields a PDE in space only, as all temporal derivatives

are replaced by powers of the time-frequency variable s. The following problem specific
Sturm-Liouville Transformation (SLT, � �	���

) acts similar on the spatial derivatives, result-
ing in a transfer function, both in time and space frequency domain. Discretization with
the impulse-invariant transformation, inverse 
 -transformation, and inverse SLT yield the
desired discrete solution in terms of weighted complex first order recursive systems.
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Figure 1: General procedure of the FTM solving initial-boundary-value problems defined
in form of PDEs and initial conditions (IC) and boundary conditions (BC). Further abbre-
viations are explained in the remainder of this section.

The actual solution of the initial-boundary-value problem is performed by the search for
the eigenvectors K(β, ~x) and the corresponding eigenvalues β of a Sturm-Liouville type
problem, which are needed for the inverse SLT, resp. the search for the adjoint eigenvec-
tors K̃(β̃, ~x) and the corresponding adjoint eigenvalues β̃, which are needed for the SLT. In
doing so, the eigenvectors can be determined by elementary matrix operations (see [TR03]),
however the discrete values of βµ (finite spatial regions always yield discrete eigenvalues)
have to be found by an extensive search, especially for complex spatial regions.
Nethertheless, as a simple geometry was chosen in section 2.1, the eigenvalues βµ can be
given analytically in this scenario
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with j denoting the imaginary unit and µ1, µ2, µ3 � N0, each integer value corresponding
to one spatial dimension.

2.3 Efficient Realization with the FFT

The computational effort for the FTM is mainly determined by the Nyquist frequency of
the discretization. As only frequencies ωµ (see equation (3)) below the Nyquist frequency
fs

2 (half the sampling frequency) have to be considered, one can determine the maximum
number of the integers in equation (3) to be

Ni := µi

�
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�
1; 2; 3

�
. (4)

As each recursive system requires 3 floating point multiplications (FPM), one can estimate
the total amount of FPM by 3N1N2N3. However, so far the inverse SLT has to applied
for each evaluation point separately, i.e. a visualization of the complete wave field with
N1 � N2 � N3 evaluation points (optimal spatial resolution) would require 3 (N1N2N3)

2

FPM. Fortunately, for this simple geometry and equally spaced evaluation points, one can
prove the equivalence of the inverse SLT with a three-dimensional FFT, so that efficient
FFT-algorithms (see [FJ98] for instance) can be applied. For cubic rooms with N := N1 =
N2 = N3 the number of FPM drops down from 3N 6 to N3(3 + log2 N).

3 Implementation and Results

The implementation of the proposed algorithm and a performance comparison are given in
this section.

3.1 The Program “Wave3D”

The proposed method is implemented in the program “Wave3D”. It simulates wave prop-
agation in a 3D rectangular room and displays a 2D cut of this wave field in the main
window, as it can be seen in the screenshots in figure 2. It has a comfortable graphical user
interface, where all parameters can be edited and saved, resp. loaded. In dependence on
the chosen room-sizes and sampling frequencies, fluent animations of the wave field are
created, for instance 5 frames per second for a 90m3 room with a Nyquist frequency of
5kHz on current PC-hardware.

3.2 Performance

The comparison of the performance of the program “Wave3D” with methods from literature
is carried out in two steps: first the program is compared, both in computational effort and
accuracy, to a FDTD implementation at our laboratory. Then the absolute time per iteration
(per sample) is compared with a waveguide mesh implementation from literature. The ac-
curacy of the FDTD method and the waveguide mesh can be assumed to be similar. Further



Figure 2: Screenshots taken from the program “Wave3D”. It displays the 2D-cut from a 3D
wave-field, excited by an impulse (left side) resp. by a sine-function (right side).

methods, as the finite element method or the mirror image method are not considered, as
these methods are much more demanding in terms of computational power.
As a test scenario, the parameters from the waveguide implementation in [ME04] are cho-
sen, i.e. a rectangular room of size 2m � 2m � 1m and a spatial resolution of 2cm, resulting
in a total number of 100 � 100 � 50 = 0.5

�
106 nodes. A FDTD implementation needs 8

FPM per node, resulting in 4
�
106 FPM per time step. The FTM implementation requires

(3 + 7)
�
0.5

�
106 = 5

�
106 FPM per time step or 25% more.

The required time step size can be determined from the stability condition of the FDTD im-
plementation (see [SRT94]). It results in a Nyquist frequency of 15kHz, while the Nyquist
frequency of the FTM-implementation is only 8.7kHz (see equation (4)). Nevertheless,
both simulations were run at a temporal sample rate of 30kHz, i.e. a sample step size of
T = 33µs. The excitation was a Gaussian impulse with a strong lowpass characteristic
such that no frequency components above the Nyquist frequency were excited. The Gaus-
sian curve was adjusted such that all frequencies above 15kHz were more than 80dB below
the peak value.
The resulting simulations can be seen in figure 3. They show the response to a Gaussian
pulse in the center 2.33ms after the excitation. The left plot was created with the program
“Wave3D”, the right plot was created with a FDTD implementation in MATLAB. It is
obvious, that the results of the FDTD method suffer from dispersion, which is not present
in the results of the FTM method.
For an exact comparison of the simulation accuracy, the results of both methods would
have to be compared against an analytic result or a highly accurate numerical solution.
A somewhat simpler approach was taken here. The step size of the FDTD solution has
been decreased until no more dispersion was visible in the results. The FDTD simulations
with increased spatial resolution (and in consequence increased temporal resolutions) are
depicted in figure 4. These simulations require many more FPM, however still some dis-
persion artefacts are visible. The final FDTD simulation is depicted in figure 5 on the right.



Figure 3: 2D snapshots of a 3D wave field simulation of a 2 � 2 � 1m3 room at fs = 30kHz.
The left plot is simulated with the FTM and the right plot with the FDTD method. The
dispersion artefacts of the FDTD simulation are clearly visible. The wave amplitudes are
shown in a linear color scale.

numerical method FTM FDTD FDTD
spatial step size 2 cm 2cm 0.5 cm
FPM per time interval T 5

�
106 4

�
106 109

Table 1: Number of floating point multiplications (FPM) per time interval T = 33µs for
the results of the FTM and FDTD implementations shown in figure 3 and figure 5 .

The spatial and the temporal resolution is 4 times higher (i.e. 0.5cm and 8.33µs) than in
figure 3, yielding an increase in the number of required FPM of 44 = 256. On the left side
of figure 5 the FTM simulation from figure 3 with interpolated points is shown. Both plots
are in a logarithmic scale. The error of the FTM simulation is equally distributed and be-
low -40dB, whereas the error of the FDTD simulation is concentrated shortly after the main
slope and reaches about -30dB. The results of these simulations are compiled in table 1.
They show that for comparable accuracy (see figure 5) the FTM method is faster than the
FDTD method by a factor of almost 200.
A comparison with waveguide mesh implementations from literature gives similar results.
The absolute time for one time step of the proposed scenario with “Wave3D” is about half
a second on a Pentium III 1000MHz PC with 512Mb RAM. This is almost identical to the
computation times measured in [ME04]. However, the waveguide mesh suffers from dis-
persion too, as it can be clearly seen in screenshots given in [BM04]. Trying to achieve the
same accuracy with a waveguide mesh and the FTM implementation would yield similar
results as above.



4 Conclusions

A new approach for the simulation of 3D acoustical wave fields has been presented. The
acoustical wave equation was solved with the functional transformation method in the fre-
quency domain. Fast FFT implementations were used to evaluate the entire wave field. A
simulation tool called “Wave3D” was presented, that simulates wave propagation in a 3D
rectangular room. The proposed approach does not suffer from dispersion. This advantage
turned out clearly in performance comparisons with a FDTD implementation and a waveg-
uide mesh implementation from literature.
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Figure 4: Snapshots of FDTD simulations with identical parameters as in figure 3. Only
the spatial resolution was increased to 1cm (left plot), resp. 0.66cm (right plot). Dispersion
artefact are still visible.

Figure 5: FTM (left plot) and FDTD (right plot) simulations in a logarithmic scale with
parameters from figure 3, but a 4 times higher spatial resolution. The color bar is labeled in
dB below peak value.


