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Abstract 

 
We enhance the standard ns-2 model for IEEE 802.11 WLANs such that it reflects the 

delays that are measured in a real ad-hoc network composed of laptops. From timestamps 
for UDP transmissions, which are recorded at several points on the way from application 
layer to application layer in a lowly-loaded system, we derive various empirical 
distributions, which we incorporate into the ns-2 model in order to better capture the real 
system. For validation, we compare simulated and measured end-to-end delays for UDP 
transmissions under different load conditions. Our experiments demonstrate the 
difficulties encountered when tuning a generic and widely used simulation model to a real 
scenario and suggest that cross-correlation among subsequent delays need to be 
considered for a satisfactory match of simulation and measurements.     

 
1 Introduction 

 
Model building usually implies the adoption of many assumptions the impact of which 

is hard to assess in complex systems. When a real system exists, measurements taken 
from this system may help to make assumptions more precise (e.g., by providing a 
probabilistic distribution inferred from real data) and/or to quantify the overall impact of 
assumptions (e.g., by comparing sensitive performance measures from the model with 
measurements from the real system). By measurement-based modeling, we refer to an 
iterative model building process including input modeling and validation with respect to a 
real system. Resulting models may be trusted to provide reasonable results in 
configurations beyond the scope of the actual real system (with respect to traffic load, 
number of components, etc.).    

In the context of performance modeling of wireless local area networks (WLANs), we 
describe the steps in measurement-based modeling. For data collection, we implemented 
a high-precision measurement infrastructure for WLANs comprising laptops running 
Linux. Data analysis for input modeling, especially for various delays in the protocol 
stack, is prevalently done with the R tool [1]. The models are constructed and evaluated 
with the network simulator ns-2 [2]. The paper also addresses some modeling details, 
validation and simulation results (end-to-end delays between stations in a WLAN).    

In summary, we provide a framework for measurement-based modeling of WLANs as 
demonstrated for an ad-hoc network. An infrastructure with access points may of course 
also be studied.    

 



2 Data Collection on the Real System 
 
The real system under study may be an ad-hoc or infrastructure WLAN with laptops 

running Linux 2.4 (with nano-kernel for timestamp resolution in nanoseconds). 
Measurements are taken on two (or more) laptops, where timestamps are synchronized 
offline for one-way delays by means of additionally recorded GPS signals on each 
machine (as adapted from [3,4]). 

 Delay Sample mean  
(in microsecs) 

Dependence 
on payload 

APP-OUT 15 Linear 

OUT-POST 5 None 

POST-DEV 750 Linear 

DEV-PRE 150 Linear 

PRE-IN 15 None 

IN-APP 130 Irregular 

END-To-END 1065 = 1,065 ms - 

 
Figure and Table 1: Measurement points on the path of a UDP packet (left) and 

Measured delays (for payloads of 100 byte; right) 
 
The measurement infrastructure includes packet generators (i.e., C programs) on the 

application layer, by which clients can send data packets to a server across the wireless 
link – either via UDP or TCP. Currently, the MAC/PHY layers of the laptops comply 
with the IEEE 802.11b protocols. For our measurements, the Distributed Coordination 
Function (DCF) with the Basic Access (BA) handshaking scheme was employed. Apart 
from timestamps taken in the client/server on the application layer (measurement points 
APP), from which end-to-end delays are computed (after offline-synchronization), the 
netfilter framework [5], which is at the base of the measurement infrastructure, allows us 
timestamp packets at various “hooks” (in the network layer) on their way through the 
protocol stack.  Besides the measurement points APP for both client and server, Figure 1 
shows the four netfilter hooks (OUT, POST, PRE, IN) passed by a UDP packet on its 
way from client to server. Essentially, these four measurement points are before and after 
the routing decision in the network layer (in either direction). Additionally, timestamps 
are recorded upon reception of a packet in the network card (measurement point DEV in 
Figure 1).  In the measurement infrastructure, the timestamps (and packet header 
information) at the latter five measurement points are collected by Linux kernel modules 
and eventually written to ASCII files. The timestamp files are further processed by 
custom-designed Java scripts to yield interarrival time or delay distributions at or between 
measurement points. For one-way delays between two machines (with unsynchronized 
clocks), the timestamps are synchronized offline involving identical GPS signals received 
by each station once per second (PPS-API – pulse per second [4,6]). 

In total, we can thus measure six contiguous delays (APP-OUT, OUT-POST, POST-
DEV, DEV-PRE, PRE-IN, IN-APP) for a single UDP  transmission. Between two 



identical laptops (HP OmniBook XE3, 900 MHz), we roughly obtain the sample means 
of the respective delays as shown in Table 1. (The delays were measured at very low 
system load.) On the average, it takes slightly more than 1 ms to send a payload of 100 
byte from application layer to application layer. The last column indicates whether the 
delay is quasi insensitive to the payload (none), grows linearly with the payload (linear) 
or is affected by more complex (random) effects (irregular). 

The histogram of delay PRE-IN to the right 
(which appears not to depend on the payload, here 
100 byte) is a rather representative example. The 
sample mean is slightly greater than 15 microsecs 
and the squared coefficient of variation around 
0.05. The figure was produced  from 100000 
pieces of data with the R tool [1]. It is obvious 
from this trimodal histogram that one cannot 
easily fit a theoretical distribution to this data. In 
fact, standard distribution-fitting software does 
not deliver an acceptable fit for any of the six 
delay distributions. However, no significant 
autocorrelation was observed in delay data. Thus, we decide to reflect the measured 
delays in our simulation model as empirical distributions (according to [8]). In case of 
linear dependence of the delays on the payload, the empirical distributions are shifted 
according to an interpolation between three reference measurements (with payloads 100, 
500 and 1200 byte). In case of delay IN-APP, the precise approach to capture the 
irregular effects is outlined in [8].   

 
   

3 Simulation Modeling with ns-2 
 
The freely available network simulator ns-2 [2] comes with a number models for 

network protocols (encoded in the programming language C++), among them TCP/UDP, 
IP and IEEE 802.11. Complex models are rather conveniently composed in the object-
oriented script language OTcl, by which the various submodels can be parameterized. 
Thus, a model scenario of a WLAN, which corresponds to our measurement setup and 
which includes the complete protocol stack, is quickly evaluated – theoretically without 
any knowledge of the C++ code. (In practice, the current ns-2.28 distribution still 
includes some bugs, which need to be remedied by hand. For instance, as also known 
from appropriate mailing lists, the default IEEE 802.11 protocol model always goes into 
backoff irrespective of sensing an idle or busy channel. Also, the size of the 8-byte UDP 
headers are ignored. ).  

When performing experiments with the thus corrected model, one observes that the 
end-to-end delays for UDP transmissions over a wireless link between two stations  
exhibit a constant value. For payloads of 100 byte in low load, one obtains around 0.4 ms, 
which is significantly lower than the 1.065 ms we observed in our real system. In 
addition, the real end-to-end delays follow some non-deterministic distribution.           

Our primary goal now is to enhance the standard ns-2 model such that it reflects the 
delays that are measured in our real system by means of the measurement infrastructure. 
We will appropriately integrate empirical distributions in the ns-2 protocol stack (as an 



input modeling step) and validate the end-to-end delays of the simulation model with 
measurements.  

 
In ns-2, a packet object is passed through 

several C++ objects on its way from sender to 
receiver. To the right, the C++ objects are 
depicted that a payload sent via UDP traverses 
in the sender (left-hand side) and in the reveiver 
(right-hand side). Additionally, the protocol 
layers, to which the objects may be attributed, 
are indicated. For instance, we assumed in the 
figure that payloads are generated by an 
application according to a CBR source. The 
blocks labelled WirelessChannel indeed denote 
the same object. Trace objects serve to collect 
statistics during the simulation. In objects 
marked with an asterisk, packets may be 
delayed by the default ns-2 model. In low-load 
conditions, the DSDVAgent does not contribute 
to the end-to-end delay.     

Logical and technical considerations 
influence the decision to which objects the 
empirical distributions (from input modeling) 
should be linked. Technically, the 
corresponding C++ object should be accessible 
from the OTcl script, as this represents the user 
interface. For example, in the receiving branch, 
only the objects Mac802_11 and UDPAgent can 
be addressed from the OTcl script. Logically, 
the delays must be inserted in such a way that 
only the intended packets suffer the appropriate 
delay. For example, the delay PRE-IN cannot be
modeled in Mac802_11, because then also 
packets not directed to this receiving station 
would encounter this delay. Therefore, 
incorporating this delay in the UDPAgent 
appears to be better suited (even though this 
requires a redundant incorporation for TCPAgents).          

 

Following a thorough discussion in [8], the delays APP-OUT and OUT-POST are 
associated with the UDPAgent (at the sender), POST-DEV and DEV-PRE with the 
Mac802_11 object (at the receiver), PRE-IN and IN-APP with the UDPAgent (at the 
receiver). Special care must be taken for the delay POST-DEV: Only part of this delay, 
namely the actual transmission time, blocks the wireless channel for other stations. In 
addition, this transmission time depends on the selected bit rate.    

Generally, by implementing a function int command(…) in the C++ class, an OTcl 
script can access a corresponding C++ object in order to perform an arbitrary action. We 
exploit this mechanism to link objects with available delay data files for a fixed reference 



payload, from which empirical distributions are constructed before simulation start. 
Additional parameters (e.g., the slopes for linear interpolation) are provided.  

 
4 Validation and Simulation Results 

 
Input modeling and validation require different measurements, under low load in the 

former case and under moderate/high load in the latter case. We validate our model by 
comparing the end-to-end delay distributions of generated data packets for different loads 
in ad-hoc networks with two stations. Again, the real system comprises the two HP 
OmniBook XE3 laptops, while measurements taken from this system enhance the ns-2 
model for IEEE 802.11 WLANs as described in the previous section.  

 
Figure 4: Measured (left) and simulated (right) end-to-end delay for a single UDP 

connection with exponential interarrival times (mean 4ms) and fixed payload of 800 byte 
 

Figure 4 compares the end-to-end delay densities of UDP packets of 800-byte 
payload, which are sent according to a Poisson process with rate 0.25/ms. This is still a 
low-load condition, and only the greater payload accounts for the larger mean of around 
2.5 ms (as compared to Table 1). In this experiment (with 100000 samples taken for the 
end-to-end delay), the simulated mean is slightly less than the measured one (by 1.9%). 
However, the coefficients of variation (CV) of the end-to-end delays differ significantly: 
For the measurements, we have 0.0251 vs. 0.0172 for the simulation model. Generally, it 
seems that composing the end-to-end delay of several independent random variates in 
simulation may be suitable for the expected delay, but cannot reproduce the jitter. Since 
no autocorrelation was observed for the variates, cross-correlations might have to be 
considered to improve the situation. 

In a second experiment, we add another UDP connection to the existing one above – 
with identical interarrival process and packet sizes, but in opposite direction (i.e., from B 
to A instead of A to B). Figure 5 now clearly shows the impact of an eventually blocked 
channel and possible collisions on the end-to-end delays of the original connection. The 
distributions for both measurement and simulation model become skewed to the right 
with increased means (now 3,47 ms vs. 3.40 ms, i.e., a 2.1% deviation). The simulation 
model (right-hand side) produces more values closer to the mean again leading to a 
significantly lower CV of 0.173 (as compared to 0.242 for the measurements). 



 
Figure 5: Measured (left) and simulated (right) end-to-end delay for two opposite UDP 
connections with exp. interarrival times (mean 4ms each) and fixed payload of 800 byte 

 
5 Conclusions 

 
Our experiments, including many other results in [8], show that mean end-to-end 

delays of a real system may well be predicted by a simulation model enhanced by 
empirical distributions as input models for the system-intrinsic delays. However, already 
for the jitter (i.e., CV), more sophisticated input modeling, which takes into account the 
cross-correlations between these delays, becomes necessary. Another take-home lesson is 
that one should not expect the ns-2 WLAN model to produce meaningful results with 
respect to a specific real system, unless this model is appropriately extended and tuned to 
this system.   
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