A Parallel Implementation of a Schedule-Based
Transit Assignment Algorithm for Large
Networks

Markus Friedrich, Gerd Schleupen
{friedrich | schleupeh@isvs.uni-stuttgart.de
Institut fir StrafRen- und Verkehrswesen, UnivexsBtuttgart
SeidenstralRe 36, D-70174 Stuttgart

Michael Moltenbrey
michael.moltenbrey@ipvs.uni-stuttgart.de
Institut fir Parallele und Verteilte Systeme, UniveasiGtuttgart
Universitatsstral3e 38, D-70569 Stuttgart

Hans-Joachim Bungartz
bungartz@in.tum.de
Institut fur Informatik, Technische Universit Miinchen
BoltzmannstralRe 3, D-85748 Garching

Abstract

Handling traffic requires proper planning and simulation. Therefore, one needs to model the
journeys of travellers. Assignment procedures are used for that. However, obtaining high
quality results in large networks is computationally intensive and requires a sophisticated
implementation of algorithms. We describe and analyze a parallel implementation of an
transit assignment algorithm.

1 Introduction

Assignment procedures model and simulate the journeys of travellers in transport networks
from origin to destination. As a result the procedures provide not only traffic volumes for
links and transit lines but also indicators describing the service quality of a network.
Assignment procedures for transit networks need to model the spatial and temporal struc-
ture of traffic supply as well as travel costs. Line routes and timetables must be examined in
great detail in order to mirror exact transfer times and timetable co-ordination. This type of
schedule-basedearch algorithm can be found in passenger information systems provided
by an increasing number of transit operators (e.g. www.bahn.de). Here, the search algo-
rithms are applied and optimized for a one-to-one type of problem. Assignment in transport
planning, however, needs to examine an entire network and the connections between all



traffic zones. This extends the search to a many-to-many problem, which can produce long
computing times for big nation-wide networks.

Obtaining high quality results (e.g. identification of fast but expensive and/or slow but
cheap alternatives) and coping with the resulting problem size, requires specific algorithms
and a sophisticated implementation. Objective of the proposed paper is to describe the
implementation of an existing schedule based assignment algorithm using parallel imple-
mentation techniques.

2 Algorithm

The algorithm for the schedule based transit assignment (see [1]) consists of three successive
steps, which are described below:

2.1 Preprocessing

The objective of the preprocessing step is the generaticroohection segmentsvhich
describe a part of a journey. These segments are the building blocks of connections in the
search process. A connection segment represents a transfer-free ride on one transit line. A
connection made up of an access walk, a bus ride and an egress walk, for example, consists
of three connection segments.
From the line route data, an initial step generates the netwarkte segmentsA single
route segment describes a segment of a transit line between a boarding stop and an alighting
stop. It has an initial stop node, a terminal stop node, a length and a running time.
Subsequentlygconnection segmentwre calculated from the set of route segments. It
additionally carries information on the departure and arrival time.

2.2 Connection Search

A dynamic, i.e. time-dependent, multi-path algorithm is applied to determine all potential
connections. This algorithm builds a connection tree which may contain several paths (con-
nections) from the origin to a destination node. Since the tree’s width largely depends on the
number of runs of the transit lines, it may be much wider than a usual shortest-path tree. On
the other hand, the use of entire connection legs as tree edges simplifies the tree’s structure
to a great extent and limits its depth by the maximum number of transfers. A typical value
of this user-defined constant is 4 or 5.

Figure 1 outlines the structure of the connection tree. The root of the tree is the centroid
node of the origin zone and the only outgoing branch represents the access from the origin
to the first transit stop.

Starting from the tree’s origin node, a branch & bound strategy is employed. Given
a connection segment from the current tree level, all possible successors are considered.
Every connection segment s is described by means of the following attributes:

e departure time:; and arrival timey,



walking link
connection segment
dep. arr. lighting stop destination
connection segment transfer stop

dep. arr.

boarding stop 4& width

walking link

origin
connection segment

level 0 level 1 level 2 level 3 level 4
F t t } — depth

Figure 1: Structure of the connection tree

e travel timet,
o fare f

Naturally, these quantities are also defined for connections gequencesf connection
segments). Furthermore, if a connectiois composed of: connection segments, the
number of transfers ia. = n — 1.The resulting search impedance of a connection c is
then defined as:

Ve = X'te + X"ne + X7 fo (X! > 0,x" > 0,x7 >0)

where the coefficients are user-defined parameters.
Now, let s be the currently processed connection segment from networkmtmleet-
work nodeb. Letc* be the new connection between the origin nodetaiodmed by adding
s to some connection arriving ata. Finally, letC, be the set of all known connections to
b.
Connection segment s is inserted into the tree as an successor of c, if the following
conditions hold:

e Temporal suitability:The connection segmentdeparts from node only after the
arrival of connectiore plus a minimum transfer wait time and before a user-defined
maximum transfer wait time has elapsed.

e Dominance:There is no known connectiah € C, that is faster, contains less trans-
fers and is cheaper.

e Tolerance constraintstUser-defined tolerances compared to the best known connec-
tions are not exceeded.

e Loops: Transferswithin a transit line are only allowed for lines containing a loop,
provided that the passenger can save time by boarding an earlier vehicle trip (run) at
the intersection node of the route loop.



The resulting set of connections is the input for a connection choice model. The choice
model distributes the travel demand onto the set of connections determined in the search
process. It reflects interaction effects between competing alternatives. For a description of
the choice model refer to [1, 2].

3 Use Cases

The algorithm is ideal for railway networks where headways are long and the coordination
of the timetable is important. One use case is the application of the algorithm to the German
railway network. An interface to the data source provided by passenger information systems
is used to build a railway network model which contains all long distance trains and relevant
local trains. This railway network is integrated with a digital road network to provide a solid
basis for multi-modal network analysis and traffic flow simulation.

The common ground for the railway and road network are 6,929 traffic-zones where trips
start and terminate. Except for the zones there is no coherence between these 2 parts of the
network. Each network has its own links and nodes.

The railway network is based on approximate 15,000 nodes and 32,500 links. 13,700 of
the nodes serve as stations, the remaining nodes represent junctions. The daily timetable is
described by 34,385 vehicle journeys which were transferred from the passenger informa-
tion system.

734 high-speed trains (e.g. ICE, Thalys, TGV, Eurostar, Cisalpino)

1,302 rapid long-distance trains (e.g. IC, EC)

1,257 long-distance trains (e.g. IR, IRE, D)

21,897 local trains (e.g. RE, RB)
e 9,195 suburban trains (S-Bahn)

This sums up to approx. 3.0 Mio vehicle-km traveled on an average working day. For this
the total running time is 44,000 hours 68km/h mean speed).

There are two main difficulties in building up such a big railway network. The first
difficulty concerns the integration of the timetables into the railway network and the second
is to generate automatically the connectors which connect the right stations with the right
zones.

Integrating the timetable requires a matching between the timetable station names of
the information system and the station names of the network. Without this allocation it is
not possible to transfer the timetables into the network. The allocation is simple when the
stations have the same name in both systems. But only about 50% of the station names
match perfectly. For the rest it was necessary to develop other methods to get a higher
matching rate.

Two methods are applied to make an alignment between the timetable stations and the
network stations. The first method is to replace special parts in a name. This method has the



Figure 2: Service Frequency in German Railway Network

disadvantage that only defined changes can be regarded, other changes will be ignored. For
this reason a dynamical alignment method, called “Needleman-Wunsch-Algorithm” was
adapted. This algorithm has its origin in the alignment of DNA-Sequences. It allows to
compare two strings on similarity under the use of a scoring matrix, which has evaluated
values for each combination of two characters. In the case of making an alignment be-
tween timetable stations and network stations, it can be said that this method can be used
additionally to the first alignment which compares the two strings on total similarity.

The second difficulty is the generation of connectors in the railway network. The reason
why it is so difficult to generate connectors is that the direct-distances between the centroid
of a zone and the associated stations have wild fluctuations. The reason is that the centroid
of a zone is the geometrical balance-point of the zone polygon and not the balance-point
of the infrastructure. That for example the zone named “Stuttgart-Mitte” will be connected
to the right stations, it is also possible to connect zones to the stations whose names have
a great affinity to the zone names, combined with a limitation in the direct distance. The
method for the measure of the affinity is the same like in the alignment of the train stations,
but with a lower scoring limit.

4 Parallelization Strategies for the Implementation

Larger problems and thereby larger networks require certain techniques for enhancing the
computational speed. One possibility is the use of parallelization techniques. A first solution
to this problem is outlined in this section.

The investigated branch & bound algorithm is optimized for sequential computations and
performs very good in that case (see [1]). However, this optimization and its development
for the primarily sequential usage entails some drawbacks that make a parallel processing
of the entire algorithm very difficult. Thus, only parts of it can be taken into account for
parallelisation. We have identified the connection search as a particularly promising part



Slave 1

Master ,
Read Input Data, e
" Results Slave 2
" Data [[Search |
Input
Distribute |~
S Results
Postprocessing 4~
I+
Data
Slave n
Results ™.

Figure 3: Outline of an algorithm path

of the algorithm both in terms of speed-up potentials and in terms of parallelizability. The
resulting parallel algorithm with dynamic load balancing is described in the following.

The basic approach is to distribute the work of computing all connection trees among
the different participating processors p. Thereby, each processor only computes a subset of
these connection trees.

The basic workflow of our implementation is outlined in Figure 3. The first general step
comprises the build-up process of the traffic network. Therefore, all necessary data are read
from appropriate input files in order to build the network (read data). Parallelization of
this step is not very useful since the build-up process is a strict sequential workflow. The
preprocessing step as outlined in the previous sections is also done in the master process
completely analogous to the sequential algorithm (see [1]).

After this preprocessing, we start to distribute the created data among the processes.
Different connection trees can be computed independently. Connection segments are not
computed separately since they can easily be constructed with the help of route segments
and the timetable information. This saves computation time and memory, as well.

All necessary information is broadcasted to each ofstpeocessors and is used to build
a simplified traffic network on each processor (distribute). The simplified network contains
the whole traffic network. However, it is reduced to the minimum data required. In fact, we
only need the data computed in the preprocessing step and timetable information, as well.
An explicit representation of the network graph is not required. To support efficient com-
munication, we use appropriate and compact data structures for broadcasting (e.g. arrays of
basic data types).

After a simplified traffic network is build on each processor, our implementation starts
to distribute the network nodes in their function as source nodes for connection trees. How-
ever, it is not useful to statically assign each process a specific subset of the nodes. The
computation time for building a connection tree is likely to vary in dependence of source
nodes. Therefore, we apply a dynamic strategy. In a first approach, we use a master-slave
model for load balancing, i.e. a process requests a new source node as soon as it has finished
to compute the connection tree of its current source node. In the long run, each processor
p; is assigned a certain subsebf all network nodes.

Each processor computes the connection tree for its current source node. Afterwards,



the actual assignment step takes place, i.e. the total number of trips is distributed among the
connections as described in Section 2.2. We use an empirical time variation curve to split
the demand for each time interval (see [2]).

The results of each assignment step (carried out once for each connection tree) are stored
in the simplified network representation of each process. If no more network nodes are
available for processing, i.e. all connection trees and assignments have been computed,
each of the processes transmits its total assignment results to the master. There, all data are
collected in a postprocessing step in which the results are prepared for further processing.

5 Results

We tested our implementation on different architectures and with a varying number of pro-

cessors. For test purposes, we used a eight node Linux cluster with dual Intel Pentium I
processors with 800 Mhz. The second Linux cluster used is equipped with 64 nodes, each
with dual Intel Xeon 3 Ghz processors. The results of our measurements are depicted in
Figure 4.

Intel Pentium Il (800Mhz) ——
Intel Xeon (3 Ghe)

Figure 4: Runtime measurements

The graph suggests an almost constant runtime and thereby no improvement with an
increasing number of processes. However, it has to be taken into account that parsing the
network and the demand file plays an important role in the runtime behavior. Both files are
required for building the traffic network and for the assignment step. This phase lasts about
150 seconds and cannot be improved (linear time in parsing). Taking a closer look at the
runtimes for 16 and 32 processors on the 64 node cluster (354 seconds and 273 seconds
respectively), still shows partially the desired behavior, i.e. doubling the number of used
processors results in halved runtime.

A problem of our implementation gets obvious for smaller numbers of processors. As
outlined in the description of our implementation in the previous section, each processor
collects all of its computation results and sends the data back to the master only at the end



of the overall computation. Having smaller numbers of processors results in larger amounts
of data that is stored at each processors memory. This causes longer transmission times for
each message transmitted to the master. If we only have few nodes, the message size can be
large — depending on the traffic network.

Another problem is the applied load balancing strategy which turns out to become a
bottleneck with an increasing number of processors. This is due to the general problems of
the used master-slave model.

6 Discussion

The current implementation of the presented algorithm shows good characteristics. How-
ever, there is still enough room for optimization. A different load balancing strategy is
required when using this algorithm with a higher number of processors.

Another limiting factor is the size of the messages that have to be transmitted between
the processors. As outlined in the previous section, the fewer the number of processors, the
larger is the size of these messages. Therefore, we examine strategies to reduce the message
sizes. Particularly, two strategies need to be considered: the reduction of the messages that
transmit the simplified network to the slave processors and the strategy for returning the
computed data to the master processor.

In addition, different strategies for partitioning the network are under consideration
which may reduce the amount of data transferred considerably. Furthermore, other algo-
rithms may show better characteristics for parallelization, e.g. adpated shortest path algo-
rithms.

Nevertheless, our implementation reduced the computation time from more than one
hour (sequential algorithm) to a few minutes which is a noticeable improvement. How-
ever, it has to be noted that the pure sequential algorithm includes a lot of optimization
which increase the algorithm’s overall performace. These optimizations cannot be used for
parallelization sometimes do hinder an effective parallelization.

7 Acknowledgement

This work is funded by the Landesstiftung Baderisttemberg within the framework of a
program called “Modellierung und Simulation auf Hochleistungsrechnern”. We would also
like to thank PTV AG for their cooperation.

References

[1] Friedrich, M.; Hofsa3, I.; Wekeck, S.Timetable-based Transit Assignment Using
Branch & Bound Techniques. Transportation Research Records 1752 (2001).

[2] Schnabel, W.; Lohse, DGrundlagen der StraRenverkehrstechnik und der Verkehrs-
planung. Verlag Bauwesen, 1997.



	Introduction
	Algorithm
	Preprocessing
	Connection Search

	Use Cases
	Parallelization Strategies for the Implementation
	Results
	Discussion
	Acknowledgement

