
Multilevel optimization by space-filling curves in
adaptive atmospheric modeling

Jörn Behrens
behrens@ma.tum.de • http://www.joernbehrens.de/

TU München • Zentrum Mathematik (M3)
Botzmannstr. 3 • 85747 Garching • Germany

Abstract

Adaptive atmospheric modeling is a relatively young discipline in the wide area of at-
mospheric sciences. Many obstacles – mainly of technological character – hindered the
introduction of adaptive modeling techniques into atmospheric simulation software. In re-
cent years, however, a number of approaches has shown up. One of the main reasons for
the recent success is the introduction of sophisticated optimization on all levels.

In this work space-filling curves are used on several levels of algorithmic abstraction in
order to optimize an atmospheric modeling tool. For dynamic load balancing or irregular
meshes which rapidly change during the computation, space-filling curve based partition-
ing proves to be beneficial. Furthermore, space-filling curve induced indexing can help to
reorder the unknowns such that data locality is maintained. Finally, the reordering leads to
better behavior of ILU based preconditioned system solvers.

These techniques have been used in PLASMA, a parallel adaptive atmospheric model for
global studies of climate variability. PLASMA utilizes the grid generation and management
tool amatos with built in space-filling curve support.

1 Introduction

The application of adaptive modeling techniques in atmospheric modeling faces several ma-
jor obstacles. One of the most prominent ones is the anticipated inefficiency of adaptive (i.e.
unstructured and in most cases irregular) data structures. Efficiency is a must in atmospheric
modeling, since predictions are required faster than real time with high precision.

The grid generation and management library amatos [4] has been developed with the
purpose of supporting the development of adaptive atmospheric and oceanic simulation
tools with unstructured triangular grid refinement and efficiency in mind. amatos is ca-
pable of creating grids from given initial triangulations for bounded irregular domains in
two-dimensional plane, spherical settings and in three-dimensional space (see figure 1). It
provides a variety of numerical utility functions for interpolation, gradient estimation, and
integration, as well as geometrical utilities as edge intersection and boundary testing. Finite
element methods are supported by an interface to arbitrary user-defined element signatures.



Figure 1: Example grids created with amatos for atmospheric or oceanic applications

In order to efficiently manage grids, amatos has been programmed in an object oriented
manner. However, an application that builds on top of the library, can benefit from a vector
oriented consecutive data space. This paradigm is explained in more detail in section 2

Applications that are realized using amatos include stationary elliptic problem solvers,
atmospheric transport problems and simplified global atmospheric circulation modeling.
Adaptive transport modeling with semi-Lagrangian time discretization is described in [3].
The adaptive dynamical core of the model PLASMA, jointly developed with Alfred-Wegener-
Institute in Potsdam and Bremerhaven uses amatos for adaptive mesh refinement [16].
One of the most time consuming parts within PLASMA is the solution of a large linear sys-
tem of equations that has to be solved within each iteration. For the solution, preconditioned
Krylov subspace methods are employed, provided by the interface library FoSSI [8].

In order to investigate efficiency, three levels of granularity are distinguished. Space-
filling curves (SFCs) are used on all three levels:

• global (grid) level: SFC partitioning for parallel domain decomposition

• intermediate (system) level: SFC ordering for improved system matrix structure

• fine (cache) level: SFC ordering of mesh items for cache optimization

We will highlight all three levels of optimization in this article. However, before showing
some results of the SFC optimization, in the following section we will describe the inte-
gration of SFCs into the design of amatos. After that we investigate the effect of SFC
optimization on different levels within applications that use amatos.

To the author’s knowledge, literature in the field is focused on either aspect of SFC opti-
mization so far. Domain decomposition and load balancing (global level optimization) has
been achieved by SFCs in several publications [5, 6, 7, 9, 15, 17]. Griebel and Zumbusch
as well as Roberts and coauthors generate keys to store the mesh in hash table storage.
By using SFC keys, they automatically generate a domain decomposition enabling parallel
computations. Zumbusch as well as Hungershöfer and Wierum prove some desirable prop-
erties for SFC induced partitions [11, 19]. On the other hand, Günther et al. and Bader and
Zenger use space-filling curves for cache oblivious algorithms [1, 10].

In this study we show that by ordering mesh items consistently along a space-filling
curve of Sierpinsky type, all levels of optimization can be covered in one sweep.



VectorGather

Numerical
Calculations

VectorScatter

Grid
Manipulations

Time (h):      0.00
(c) J. Behrens 2000
Program: Flash90

Time (h):      0.00
(c) J. Behrens 2000
Program: Flash90

Time (h):      6.00
(c) J. Behrens 2000
Program: Flash90

Figure 2: Gather/scatter paradigm for efficient implementation of two phases of an unstruc-
tured mesh computation

2 Space filling curves in amatos

The grid management library amatos has a built in capability to order mesh items utilizing
a space-filling curve. In this section we will describe the algorithm to create such mappings.
The SFC ordering plays an important role in the efficiency of an application that builds upon
amatos. Therefore, a description of the philosophy behind amatos’ data management
concept is given.

In order to start with the data management paradigm, we try to analyze the character-
istics of efficient unstructured mesh computations. An unstructured mesh can be managed
efficiently by object oriented hierarchical data structures [14, 18]. These data structures are
most efficiently managed by trees or hash tables.

On the other hand, efficient numerical computations, like integration in time, or matrix
multiplications, are most efficiently performed in consecutive vector-like data structures,
allowing for either vectorization or blocking for cache efficiency.

In effect, an unstructured grid computation consists of two phases (see figure 2):

1. the mesh generation and adaptation phase

2. the numerical computation phase

Both phases comprise very different data access patterns and data structures for efficiency.
Therefore, amatos separates these phases strictly by a gather/scatter paradigm. Look-
ing at the mesh as a kind of well organized container of (unstructured) data, in a gather
step an application reorders all data in consecutive vector-like data structures for numerical
computation. Then, after completing the numerical computation, data are scattered back to



19 20

11 14

13

16

15

89

3

18
21

22

19

20

11

14

13

16

15

8

3

9

18

21

2213

1

1 2

3 4

5

6

7

810

9

11
12

13

unique identifiers SFC identifiers after mapping

Figure 3: Mapping procedure from unique identifiers of mesh atoms to consecutive structure

the mesh. Once, updated data are stored at the correct (object) locations, the mesh can be
manipulated.

The gather/scatter algorithms in amatos are just collector operations that run over all
mesh items that contain the requested data. One can gather index sets (e.g. the global
vertex indices to all cells on the finest level of refinement), or data sets (e.g. the value of a
variable stored at vertices and edges, like for a lagrangian second order finite element). The
gather/scatter algorithms in amatos are not especially optimized. Experience shows that
in practical applications the overhead introduced by the gather/scatter operation is below
1% of the computing time.

Internally, mesh items are stored as objects. We call these mesh items mesh atoms which
are:

• nodes/vertices, defined by their position (coordinate)

• edges, defined by their node indices

• cells defined by their node indices or (redundantly) by their edge indices

Each atom has a unique identifier and belongs to a mesh (several different meshes can
be managed by amatos, for example in time dependent computations, where the mesh
changes in each time step). There is a mapping data structure (usually a permutation array)
that maps mesh items to consecutive data. An example of this mechanism is illustrated for
cells in figure 3

SFC indices are computed on the fly during mesh refinement. The refinement strategy is
based on marked edge refinement as introduced by Bänsch [2]. The following data have to
be known a priory:

1. the number of triangles in the initial triangulation N0,

2. the maximum number of refinement levels l.

With these data, for each cell we need a bit structure of length b = log2(N0) + l. While
the first b− l bits are used for consecutively numbering the initial elements arbitrarily, each



000 000

step 0 step 1

100

step 2

000

100

110

010

step 2

000

010
011100

101

110111

Figure 4: Construction of a space-filling curve in a triangular mesh with bisection of marked
edge

level is then represented by an additional bit. To illustrate the following algorithm, observe
figure 4.

Algorithm 2.1 (Space-filling curve for bisection refinement)
Let τk be a cell on level k of the mesh, and we denote with τk

i , (i ∈ {l, r}) both daugh-
ters (left and right) of cell τk−1. For simplicity, we assume only one cell τ0 in the initial
triangulation, therefore b = l.

1. The algorithm starts with a zero bitmap of length b in τ0.

2. FOR each level (k = 1 : l) DO:

(a) copy the mother’s (τk−1) bitmap to both daughter cells (τk
{l,r});

(b) determine left or right side cell τk
e according to the level:{

τk
e = τk

l , if mod(k, 2) = 0,
τk
e = τk

r , if mod(k, 2) = 1;

(c) set the k-th bit of daughter τk
e to 1.

3. END FOR

Once the SFC index for each mesh cell has been computed, it is easy to construct a map-
ping index, since one only has to sort the SFC indices consecutively. If higher order finite
elements are used, then usually unknowns can be located at vertices, edges and within cells.
A consistent SFC ordering of all unknowns can be achieved, by collecting all unknowns
along the cell-induced SFC.

3 Benefit of SFC optimization in applications

We will investigate the properties of SFC ordering of mesh items in different types of appli-
cations. First we cite some material published earlier on domain decomposition properties
of SFCs [5]. The domain decomposition for an adaptive atmospheric tracer transport appli-
cation on eight processors is shown in figure 5.

When using SFC induced partitions, the load balancing parameter could be improved in
comparison to a state of the art mesh partitioner (Metis [12]). Comparing the time series



Figure 5: Domain decomposition in a tracer transport application by Metis (left) and by
SFC indexing (right)

0 200 400 600 800
1

1.05

1.1

1.15

time

ba
la

nc
in

g 
pa

ra
m

et
er

SFC  
Metis

0 200 400 600 800
0.04

0.06

0.08

0.1

0.12

0.14

time

re
la

tiv
e 

ed
ge

−
cu

t

SFC  
Metis

Figure 6: Load balancing parameter (left) edge cut (right) in a time series of a tracer trans-
port application

of the load balancing parameter in figure 6, one can clearly observe the advantage of SFC
induced partitioning. On the other hand, the edge cut is slightly inferior. This is clear since
one of Metis’ optimization criteria is minimization of the edge cut. However, Zumbusch
showed that the SFC edge cut is in a bounded neighborhood of the optimum edge cut [19].
This application of SFC induced optimization represents the global level.

On the intermediate level of optimization, the matrix structure of a finite element solver
is improved. In an adaptive global atmospheric circulation application (PLASMA), a large
linear system of equations has to be solved in the core [13]. For the solution, an ILU
preconditioned Krylov subspace method (BiCGSTAB) is used. The matrix structure of a
typical system matrix (for illustration reasons smaller than the real problem) is shown in
figure 7. The unsorted (sparse) matrix structure shows wide fan out of entries, leading to
substantial fill-in in the ILU algorithm. The SFC ordering groups most of the entries close



Figure 7: System matrix of an adaptive atmospheric circulation model: sparsity structure
with different sorting algorithms (from left to right: unsorted, reverse SFC, reverse Cuthill-
McKee [RCM], approx. minimum degree [AMD])

Figure 8: Number of iterations in ILU preconditioning for different sorting algorithms

to the diagonal, leaving some (few) entries far from the diagonal. Other common matrix
ordering methods show similar patterns. The optimization of matrix structure with respect
to potential fill-in leads to substantially reduced iteration counts in the preconditioning as
illustrated in figure 8.

On the finest optimization level, space-filling curves serve as cache optimization tools.
We look at the connectivity matrix of a grid (see figure 9). This matrix represents the data
access pattern for a nearest neighbor operation, when data are stored at vertex locations.
Nearest vertex neighbor operations are typical for finite element and finite difference type
applications. It can be clearly seen that the unsorted matrix almost everywhere features long
distances of neighboring data in memory. This is indicated by matrix entries far away from
the diagonal. Three common sorting algorithms induce connectivity matrices with entries
grouped around the diagonal. A closer analysis of potential cache misses for an artificial
processor with a cache line length of 32 words shows, that the SFC induced ordering is again
beneficial, compared to other standard sorting algorithms. Figure 10 shows the pattern
of cache misses: each bar is either zero (if all nearest neighbors fit in one cache line) or
represents the longest distance between neighbors in memory. The SFC induced pattern



Figure 9: Connectivity matrix structure with different sorting algorithms (from left to right:
unsorted, SFC sorting, RCM sorting, AMD sorting

Figure 10: Nearest neighbor operation: cache miss pattern (left) and absolute number of
cache misses (right) for different sorting algorithms

shows large distances, if the neighbors do not fit on one line. However, the pattern shows
large gaps, indicating that in most cases, all neighbors fit on one cache line. The total
number of cache misses is significantly (about 60%) lower than for the unsorted case.

A similar result is obtained when looking at access patterns typical for finite volume
methods, where computations have to take place between neighboring cells (not vertices).
Looking again at the access pattern for cell neighbors, one can observe that the distance in
memory is large for the SFC sorting, if neighbors do not fit to one cache line. However,
significantly more often, neighbors do fit to one cache line, leading to a substantial decrease
in cache misses compared to the unsorted case.

4 Conclusions

We demonstrated a new paradigm for data organization in adaptive atmospheric applica-
tions, by observing two distinct phases in an adaptive application and separating these two



Figure 11: Cell neighbor operation: cache miss pattern (left) and absolute number of cache
misses (right) for different sorting algorithms

phases by a gather and scatter step respectively. In the numerical computation phase, we
need to sort (vectorial) data adequately such that neighborhood relations in physical space
are represented in computational space (and thus in memory layout).

It proves to be beneficial to sort the vectorial data by space-filling curves. On the global
level, optimally balanced domain partitions can be achieved, with only a minor sacrifice in
the edge cut. On an intermediate level, sparse system matrix structure can be improved such
that common solution techniques (ILU preconditioned iterative solvers) largely benefit from
lower fill-in and thus lower iteration counts. On the finest level, nearest neighbor operations
(either with respect to vertices or cells) are greatly improved, since relevant data items fit in
common cache line sizes.

One of the most important advantages of SFC induced optimization is the efficiency
of the SFC index calculation itself, since it can be achieved on the fly without noticeable
overhead.

Acknowledgements

The author would like to thank Natalja Rakowsky and Jens Zimmermann for contribu-
tions to the SFC implementation within amatos. The support of DEKLIM Project No.
01 LD 0037 is gratefully acknowledged.

References

[1] M. Bader and C. Zenger: Cache oblivious matrix multiplication using an element
ordering based on the Peano curve. Submitted to Lin. Algebra and its Applications
(2004). http://www5.in.tum.de/ bader/publikat/matmult.pdf.

[2] E. Bänsch: Local mesh refinement in 2 and 3 dimensions. Impact of Comput. in Sci.
and Eng. 3 (1991), pp. 181–191.



[3] J. Behrens, K. Dethloff, W. Hiller, and A. Rinke: Evolution of small-scale filaments
in an adaptive advection model for idealized tracer transport. Mon. Wea. Rev. 128
(2000), pp. 2976–2982.

[4] J. Behrens, N. Rakowsky, W. Hiller, D. Handorf, M. Läuter, J. Päpke, and K. Dethloff:
amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation.
Ocean Modelling 10, No. 1–2 (2005), pp. 171–183.

[5] J. Behrens and J. Zimmermann: Parallelizing an unstructured grid generator with
a space-filling curve approach. In A. Bode, T. Ludwig, W. Karl, and R. Wismüller,
editors, Euro-Par 2000 Parallel Processing – 6th International Euro-Par Conference
Munich, Germany, August/Sptember 2000 Proceedings. Lecture Notes in Computer
Science 1900 (2000), pp. 815–823, Springer Verlag.

[6] M. J. Berger, M. J. Aftosmis, D. D. Marshall, and S. M. Murman: Performance of a
new CFD solver using a hyprid programming paradigm. J. Parallel Distrib. Comput.
65 (2005), pp. 414–423.

[7] J. M. Dennis: Partitioning with space-filling curves on the cubed-sphere. Report
(2003). http://www.scd.ucar.edu/css/publications/sfc3.pdf.

[8] S. Frickenhaus, W. Hiller, and M. Best: FoSSI: The family of simplified solver inter-
faces for the rapid development of parallel numerical atmosphere and ocean models.
Ocean Modelling 10 (2005), pp. 185–191.

[9] M. Griebel and G. Zumbusch: Parallel multigrid in an adaptive PDE solver based on
hashing and space-filling curves. Parallel Computing 25 (1999), pp. 827–843.

[10] F. Günther, M. Mehl, M. Pögl, and C. Zenger: A cache-aware
algorithm for PDEs on hierarchical data structures based on
space-filling curves. Submitted to SIAM J. Sci. Comput. (2004).
http://www5.in.tum.de/forschung/peanoag/veroeffentlichungen/siam2004.pdf.

[11] J. Hungershöfer and J.-M. Wierum: On the quality of partitions based on space-filling
curves. In P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, editors,
Computational Science - ICCS 2002: International Conference, Amsterdam, The
Netherlands, April 21-24, 2002. Proceedings, Part III. Lecture Notes in Computer
Science 2331 (2002), pp. 36–45. Springer Verlag.

[12] G. Karypis and V. Kumar: Metis – A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-
trices. Version 4.0. University of Minesota, Dept. of Computer Science/ Army HPC
Research Center, Mineapolis, MN 55455. Report (1998).

[13] M. Läuter: An adaptive Lagrange-Galerkin method for the shallow water equations
on the sphere. PAMM 3 (2003), pp. 48–51.



[14] P. Leinen: Data structures and concepts for adaptive finite element methods. Com-
puting 55 (1995), pp. 325–354.

[15] J. R. Pilkington and S. B. Baden: Dynamic partitioning of non-uniform structured
workloads with spacefilling curves. IEEE Trans. Par. Distr. Systems, 7, No. 3 (1996),
pp. 288–300.

[16] N. Rakowsky, S. Frickenhaus, W. Hiller, M. Läuter, D. Handorf, and K. Dethloff: A
self-adaptive finite element model of the atmosphere. In W. Zwieflhofer and N. Kre-
itz, editors, ECMWF Workshop on the Use of High Performance Computing in Me-
teorology: Realizing Tera Computing, 4–8 November, Reading, UK, pp. 279–293.
Singapore: ECMWF/ World Scientific, 2003.

[17] S. Roberts, S. Kalyanasundaram, M. Cardew-Hall, and W. Clarke: A key based par-
allel adaptive refinement technique for finite element methods. Australian National
University, Canberra, ACT 0200, Australia. Technical report (1997).

[18] A. Schmidt and K. G. Siebert: Design of Adaptive Finite Element Software: The
Finite Element Toolbox ALBERTA, volume 42 of Lecture Notes in Computational
Science and Engineering. Berlin: Springer Verlag, 2005.

[19] G. Zumbusch: On the quality of space-filling curve induced partitions. Z. Angew.
Math. Mech. 81, Supplement 1 (2001), pp. 25–28.


	Introduction
	Space filling curves in amatos
	Benefit of SFC optimization in applications
	Conclusions

