
Cache-Oblivious Solution of the 2D Navier-Stokes
Equations

Tobias Neckel
neckel@in.tum.de

Institut für Informatik / Technische Universität München / Scientific Computing in
Computer Science

Boltzmannstraße 3, 85748 Garching

Christoph Zenger
zenger@in.tum.de

Institut für Informatik / Technische Universität München / Scientific Computing in
Computer Science

Boltzmannstraße 3, 85748 Garching

Abstract

Numerical solvers in the field of partial differential equations are often faced with a consid-
erable loss of efficiency in data access and storage usage due to jumps within the physical
memory space of the computer. To avoid this drawback, the cache hierarchy as provided by
many modern computer architectures should be used.

The purpose of this article is to provide the reader with an overview on a cache-efficient
implementation of a Finite Element Method (FEM) for the time-dependent incompressible
Navier-Stokes equations for isothermal, laminar fluid flow in two dimensions. By using
space-filling curves on hierarchically structured cartesian grids and a stack storage system,
very high Level 2 cache hit rates can directly be obtained.

The approach seems to be perfectly suited for adaptive cartesian grids, demanding only
a minimum information for adaptive refinement. Besides, an extension to three dimensions
will be straight forward. Thus, exploiting the full potential of this method promises to be
very interesting.

1 Introduction

When using the hierarchical memory system of caches that are smaller than the main mem-
ory (RAM) but have less latencies, a processor obtains copies of reused data much faster
than from the RAM.

To exploit this storage hierarchy efficiently, an algorithm has to respect locality concern-
ing time and physical memory. Temporal locality means that if data copied to the cache
has to be reused, this should be done as fast as possible in order to prevent that it is deleted
from the cache by following data. The spatial locality assures that a new data packet which

is going to be used right after the currently read packet is located next to it in the physical
memory. Because the cache holds a copy of the RAM that has the size of a whole cache
line, the new data is likely to be in the cache, too. Thus, the spatial locality reduces the
number of cache misses (i.e. number of access to data that is not in the cache).

The incompressible 2D-Navier-Stokes equations have the following form (see [2], e.g.)

∇ · u(x, t) = 0 ∀ (x, t) ∈ Ω× [0, T] (1)
∂u
∂t

+ (u · ∇)u +
1
ρ
∇p − ν ∆u = g ∀(x, t) ∈ Ω× [0, T], (2)

whereu(x, t) is the velocity vector andp(x, t) the scalar pressure on a space pointx in the
domainΩ at a specific timet ∈ [0, T]. The nabla operator∇i = ∂

∂xi
represents the gradient

or the divergence, resp., whereas∆ denotes the Laplace operator. The fluid properties are
given by the densityρ and the kinematic viscosityν.

The boundary conditions on∂Ω = ΓD ∪ ΓN ,

u(x, t) = w(x, t) ∀ (x, t) ∈ ΓD × (0, T] (3)

[µ∇u · n− p n] (x, t) = f(x, t) ∀ (x, t) ∈ ΓN × (0, T], (4)

define Dirichlet and Neumann conditions for the velocity.
Additionally, we need the initial conditions

∇ · u(x, t0 = 0) = 0 ∀ x ∈ Ω (5)

n · u(x, t0 = 0) = n ·w0 ∀ x ∈ ΓD. (6)

In our simulations, we do not consider body forces (g = 0 in (2)) and use the outflow
conditionsf = 0 in (4).

2 Cache-oblivious FEM implementation

In this section, we present a method for solving the Navier-Stokes equations based on space-
filling curves. First, an introduction to the concept of the cache-efficient implementation
elaborated in [3] is given. Then we describe the Finite Element Method used for the spatial
discretisation as well as the time integration scheme of this method (developed in [10], [5]).

2.1 Concept of the cache-oblivious implementation

One possibility to achieve the temporal and spatial locality presented in the previous sec-
tion is the usage of space-filling curves with suitable data structures and a hierarchical tree
arrangement of the grid cells.

The space-filling curve that is used to traverse and linearise the grid cells of the domain
in a depth-first strategy is the Peano-curve. One step of regular refinement following the
pattern introduced by the Peano-curve in two dimensions is shown in Fig.1(a). The refine-
ment always subdivides one father cell into nine son cells. The recursive definition of the

curve is well suited for adaptive grids (see Fig.1(b)) and for recursive programming struc-
tures to visit all cells of the domain. The property of locality of the Peano-curve assures the
temporal locality of the concept by returning quickly to already used corner nodes that hold
the degrees of freedom of the velocities (see Fig.2(a)).

(a) (b)

Figure 1:A regularly (a) and adaptively (b) refined Peano-curve on a square domain.

The data access is organised strictly locally. Thus, the program only needs to know the
data of one cell put together completely in data packets. The packets of the whole hierarchi-
cal cell arrangement are stored in a system of linear stacks where only two operations are
allowed:push(put current data packet on top of the stack) andpop(get top packet from the
stack). By implementing the stacks as arrays, this data usage assures the spatial locality. For
regular grids, two stacks would be sufficient to distinguish nodes left and right of the Peano
curve. Because of adaptivity and hierarchical demands,3d + 1 = 10 stacks are needed for
the grid corners (see [3]).

Even for complex geometries no redundant operations (costs) arise due to the underlying
concept of refinement which is very similar to the one of quadtrees and octrees (see [4], e.g.).

2.2 FEM for the Navier-Stokes equations

For solving the Navier-Stokes equations numerically, we have to discretise the equations in
space and time. We use a Finite Element Method on the velocities for the spatial discretisa-
tion. The corresponding weak form of the momentum equations (2)

∫

Ω
u̇ · s dx +

∫

Ω
(u · ∇)u · s dx − 1

ρ

∫

Ω
p (∇ · s) dx + ν

∫

Ω
∇u : ∇s dx =

=
∫

Ω
g · s dx +

∫

ΓN

f · s da. (7)

uses the Neumann boundary condition (4) and ansatz and test functionsu ands in the spaces

U =
{
u ∈ H1,2 (Ω) | u|ΓD

= w
}

S =
{
s ∈ H1,2 (Ω) | s|ΓD

= 0
}

.

H1,2 (Ω) denotes the Sobolev spaceH1 (Ω) for two dimensional functions.

In standard Galerkin manner, we project the infinite spacesU andS to finite subspaces
Uh andSh, resp. By using bilinear basis functionsΦi(x) on our regular cartesian grid nodes
to representuh(x) andsh(x), we get a time dependent system of equations from (7)

Au̇h + Duh + C(uh, vh)uh −MT
x ph/ρ = fx (8)

Av̇h + Dvh + C(uh, vh)vh −MT
y ph/ρ = fy (9)

Mxuh + Myvh = 0, (10)

where thex andy components of the semi-discrete momentum equations are represented
separately. The global matricesA (mass matrix),D (diffusion),C(uh, vh) (convection) and
Mx,My (divergence) can be assembled by their local counterparts (see Fig.2(b)).

y

x

p
e

u, v u, v

0

2 3

1

Γ2Γ4

u, v u, v

Γ1

Γ3

(a) (b)

Figure 2: Visualisation of one grid cell and the corresponding degrees of freedom (a).
Derivation of the local discrete divergence operatorsM e

x,M e
y (b).

The pressurep is not treated by FEM but has to assure the continuity equation (1) on
the discrete cell level as a Lagrange multiplier of this omnipotent constraint. With constant
valuespe on each cell, the local gradient operatorsM e T

x ,M e T
y from −pe

∫
Ωe (∇ · sh) dx

of (7) go with the local divergence operatorsM e
x,M e

y derived in Fig.2(b).

Together with the semi-discrete continuity equation (10), differentiated once with respect
to time, the usage of equations (8) and (9) leads to one linear system of equations for the
discrete pressure (see [2])

(
MxA−1MT

x + MyA
−1MT

y

)
ph = MxA−1 [−fx + Duh + C(uh, vh)uh]

+ MyA
−1 [−fy + Dvh + C(uh, vh)vh] . (11)

This system can be interpreted as a discrete pressure Poisson equation and allows the cal-
culation of the pressure at any time if velocity values are known.

As for the time integration, a simple explicit Euler method can be used to approximate
the velocity time derivativėuh by (un+1

h − un
h)/∆t. This allows to calculate the new

velocity valuesun+1
h by a simple update using the pressure gradient in each time step like

in the Chorin projection method.
Although the linear system of equations is globally presented in (11), a SOR-solver is

used that works strictly locally on each grid cell. By that means, large memory needs and
complex data structures for the sparse system matrix can be avoided and a cell-wise view
compatible to the cache concept can be obtained.

3 Results

In this section, the results of the DFG-benchmark scenario [8] for the channel flow around a
cylinder at a Reynolds number of 100 are presented, resulting in the typical Kármán vortex
street. More results of further scenarios are given in [5].

Two different levels of regular refinement are used for the simulations: level 1 with 4374
cells and level 2 with 39366 cells for the channel representing 13502 and 119070 degrees of
freedom respectively. We restrict to these levels due to our explicit time scheme that causes
a very large number of time steps for a further refinement of the grid. The simulations have
been carried out on an Intel XEON 2.4 GHz architecture with a Level 2 cache size of 512
KB. Concerning the memory requirement (see Tab.1), the program has not been optimised
yet. The L2 cache hit rate shown in Tab.1 has been measured with the tool perfex [6] which
exploits the performance counters of the CPU. The very high hit rates of more than 98%
confirm the efficiency of the implementation concept. Standard Gauß-Seidel smoothers for
multigrid methods only reach L2 hit rates less 55% as shown in [1].

Table 1:Flow around a cylinder at Re = 100: survey of reference values and measured data.

cd,max cl,max St ∆p L2 cache hit rate MEM (MB)

level 1 2.63 0.49 0.298 1.87 98.48% 2.7
level 2 3.25 1.05 0.297 2.23 98.13% 18

Scḧafer et al. [8] 3.23 1.00 0.299 2.48

The numerical results are satisfying for the regular discretisation of the domain and the
number of degrees of freedom. The first three reference values of level 2 in Tab.1 – maxi-
mum drag coefficientcd,max, maximum lift coefficientcl,max and the Strouhal numberSt –
match those in [8]. Due to the cell centered location of the pressure, an extrapolation would
further improve the difference∆p between front and back side of the cylinder.

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 10000 20000 30000 40000 50000 60000 70000 80000 90000

dr
ag

 c
oe

ffi
ci

en
t

timestep

(a) (b)

Figure 3:Results for the drag coefficient of level 2 (a) and of [9] (b).

A comparison plot of the drag coefficient with respect to time is given in Fig.3. The
mean value of 3.2 for level 2 corresponds well to the one of [9] on level 6 (667264 d.o.f.‘s).

4 Conclusion

In this paper, we have presented a cache-efficient FEM implementation for the incompress-
ible 2D-Navier-Stokes equations. It has been shown that a very high L2 cache hit rate can
directly be obtained without any postprocessing optimisation of the code.

As we are still at the beginning of our work, further research is necessary to evaluate
the whole spectrum of benefits of our approach. However, current results and first experi-
ences of [7] seem to be promising with respect to developing an efficient three dimensional
Navier-Stokes-solver for adaptive cartesian grids. This could be a possibility to address
complex problems like fluid structure interaction or direct numerical simulation of turbu-
lent scenarios.

References

[1] Douglas, C.C., Hu, J., Kowarschik, M., Rüde, U., Weiß, C.:Cache Optimization for
Structured and Unstructured Grid Multigrid, Electronic Transactions on Numerical
Analysis, 10:21-40, 2000.

[2] Gresho, P. M., Sani, R. L.:Incompressible flow and the finite element method, Chich-
ester, John Wiley & Sons Ltd, 1998.

[3] Günther, F.: Eine cache-optimale Implementierung der Finite-Elemente-Methode,
Doctoral Thesis, Institut f̈ur Informatik, TU München, 2004.

[4] Mundani, R., Bungartz, H.-J., Rank, E., Romberg, R., Niggl, E.:Efficient Algorithms
for Octree-Based Geometric Modelling, Proceedings of the Ninth International Con-
ference on Civil and Structural Engineering Computing, Civil-Comp Press, 2003.

[5] Neckel, T.: Einfache 2D-Fluid-Struktur-Wechselwirkungen mit einer cache-
optimalen Finite-Elemente-Methode, Master Thesis, Institut für Informatik, TU
München, 2005.

[6] Perfex:Linux perfex, http://www.complang.tuwien.ac.at/anton/linux-perfex/, 2000.

[7] Pögl, M.: Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für
große Probleme, Doctoral Thesis, Institut für Informatik, TU München, 2004.

[8] Scḧafer, M., Turek, S.:Benchmark Computations of Laminar Flow around a Cylinder,
http://www.featflow.de/benchall/paper.html, 1997.

[9] Turek, S.:The ‘DFG-Benchmark 1995/6’: Channel Flow around a Circle at Re=100,
http://www.featflow.de/album/catalog/benchcyl 2d/data.html, 1998.

[10] Weinzierl, T.: Eine cache-optimale Implementierung eines Navier-Stokes-Lösers
unter besonderer Berücksichtigung physikalischer Erhaltungssätze, Master Thesis,
Institut für Informatik, TU München, 2005.

