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Abstract

This paper presents the numerical results of two benchmark problems for the three
dimensional Navier-Stokes equations. The first benchmark problem prescribes the flow
around a cylinder and the second a flow through a T-shaped mixing reactor with chem-
ical species. The numerical schemes for solving the three dimensional Navier-Stokes
equations and the species equations using the parallel adaptive finite element frame-
work padfem2are illustrated. Furthermore, some efficiency results and the comparison
of the numerical computations with existing reference values are shown.
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1 Introduction

In this paper numerical solutions of two different benchmark problems for the incompress-
ible three dimensional Navier-Stokes equations are presented. The benchmark problems are
defined within the German Science Foundation high priority programs ”Flow Simulation
on High Performance Computers” and ”Analysis, Modeling and Calculation of Mixing Pro-
cesses with and without Chemical Reaction”. The first benchmark problem is a flow around
a cylinder and the second the mixing of chemical species in a T-shaped micro-mixer. In both
cases the inflow velocity fields are given and ensue a Reynolds number ofRe = 20 for the
flow around a cylinder andRe = 186 for the mixing problem. In case of the cylinder
problem the lift coefficient, the drag coefficient and the pressure difference are calculated.
The second benchmark problem comprised additionally a transport problem for the species.
For this, we compute in advance a stationary solution of the Navier-Stokes system. After-
wards, with the known velocity field the instationary transport of the species is computed.
Here, the pressure decay along the mixing channel, the mixing quality and the variation of
the species are of interest. The mean values for the species distribution are computed on
different cut planes of the T-shaped mixing channel. The numerical simulation has been
carried out with our parallel adaptive finite element framework padfem2. The method of
characteristics based on a pressure correction splitting scheme ([Cho68, Pro97, Pir89]) is

∗This work was partly supported by the German Science Foundation (DFG) project SFB-376.



used for solving the three dimensional Navier-Stokes equations. The solving method em-
ploys a stable finite element approach (mini-element) ([GR96]). The paper is organized as
follows: In the next section both benchmark problems are presented. In section 3 the nu-
merical schemes for solving the three dimensional Navier-Stokes equations and the species
equations are illustrated. Then the numerical results of both benchmark problems and the
comparison with existing reference values follows. Furthermore, some parallel runtime re-
sults using the padfem2-framework are shown. In the last section we give a short conclusion
and a remark on further work.

1.1 The Benchmark Problems

The flow for both benchmark problems is governed by the Navier-Stokes equations,where
u = u(t,x) describes the velocity,p = p(t,x) the pressure,t the time andx the spatial
variables. The kinematic viscosityν is expressed by the dynamic viscosityµ and the density
ρ by ν = µ

ρ . Using the incompressibility condition and the assumption that the density is
constant, the Navier-Stokes equations reads:

∂

∂t
u + (u · ∇)u = ν∆u− 1

ρ
∇p, div u = 0 in Ω (1)

with boundary conditions

u = uCyl
0 (x) onΓin

−pI + ν∇u = 0 onΓout

u = 0 onΓ/(Γin ∪ Γout)

for the Cylinder-Problem

u = uMix
0 (x) onΓ1,2

in

−pI + ν∇u = 0 onΓout

u = 0 onΓ/(Γ1,2
in ∪ Γout)

for the Mixing-Benchmark.

The computational domains for both benchmark problems, see Figure 1, are denoted by

Figure 1: Geometry of the benchmark problems

Ω and the boundary byΓ. The height and depth of the cylinder benchmark problem is
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H=0.41m and the L=2.5m, respectively. The diameter of the cylinder is D=0.1m, the kine-
matic viscosity of the fluidν = 10−3m2/s and the density is given byρ = 1kg/m3.
The inflow velocity field for the cylinder benchmark problem is defined as follows
uCyl

0 (x, y, z) = 16Uyz(H − y)(H − z)/H4, with U = 0.45m/s and mean veloc-
ity U = 0.2m/s. The inflow channels of the mixing reactor have the dimension of
100µm × 100µm, where the outflow dimension is prescribed by200µm × 100µm. Both
inlets have a length of300µm, so that the whole top length is given by800µm. The mixing
channel length is defined by 1500µm without the inflow channel broadness. The density
of the fluid is set toρ = 998.2kg/m3, the dynamical viscosity toµ = 0.001003kg/ms
and the diffusion coefficient in the species equation toD = 1. The inflow profile for both
inlets are prescribed byuMix

0 (x, y, z) = ± U
0.2138

∑4
k,l=0

sin((2k+1)πy/d)sin((2k+1)πz/d)
(2k+1)(2l+1)((2k+1)2+(2l+1)2) ,

with U = 1.4m/s. The additional transport equation required for the chemical speciesc is
described by the species equation∂tc + (u · ∇)c = D∆c in Ω with boundary conditions
c0(x) = 1 onΓ1

in, c0(x) = 0 onΓ/(Γ1
in ∪ Γout).

2 Numerical Approximation

Solving the Navier-Stokes equations various methods are developed in the last decades.
In this paper we use a characteristic method based on Chorin’s Projection Scheme. The
characteristic method reformulates the convective term of the Navier-Stokes equations with
the Lagrangian (material) derivative.Dtu = ∂

∂tu(t,u) + (u(t,u) · ∇)u(t,u). Using the
Lagrangian derivative and substituteq = q(t,x) = p(t,x)/ρ equations (1) reads

Dtu = ν∆u−∇q, div u = 0. (2)

Furthermore, letX = X (t; s,x) be the characteristic path ofu.X is the unique solution of
the ordinary differential equation system

∂

∂t
X (t) = v(t,X (t)), X (s; s,x) = x (3)

satisfyingX (t) = X (t; s,x) andX−1 = X (s; t,x). A usual backward implicit Euler
discretization ofDtu leads withs = tn+1 to (u(tn+1,X (tn+1))− u(tn,X (tn))) /dt =
(u(tn+1,x)− u(tn,X (tn; tn+1,x))) /dt =

(
un+1 − un ◦ X−1

)
/dt, where un ≡

u(tn,x) and dt= tn+1 − tn. The termun ◦ X−1 =: û demanded the solution of (3). An-
tagonize the numerical diffusion a higher order approximation of (3) is indispensable. This
usually leads to higher order Runge Kutta Methods. Here, a Runge Kutta method of second
order, also known as Heun’s method:x̂ = x− δtun(x), X−1 = x− δt (un(x) + un(x̂))
is used. Withκ = dtν the time discrete Navier-Stokes equations are now given by the
following generalized Stokes system

un+1 − κ∆un+1 = û− dt∇qn+1 , div un+1 = 0. (4)

Let Th be a decomposition ofΩ into tetrahedra. Inpadfem2 all tetrahedra are
transformed to a standard tetrahedra. Therefore an easy implementation and integra-
tion of the resulting bi-linearform is guaranteed. Problem (4) is discretized with the
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well known mini-finite-element approach, which fulfills the Babuska-Brezzi condition

infph∈Mh
supv∈X̂

〈p,div v〉
|v|1‖p‖0

≥ β > 0, where Mh = P1 ∩ L2
0(Ω), X̂ = P1 ⊕ B,

‖p‖0 denotes theL2-Norm and |v|1 the seminorm inH1. In this case the linear ve-
locity ansatz-function spaceP1 :=

{
v ∈ H1(Ω) : v|T ∈ P1

}
is enriched with bubble

functionsb ∈ B =
{

Φ ∈ H1 : Φ(x) = αT

∏4
i=1 λi

}
on each tetrahedra, whereλ1 =

1 − x − y − z, λ2 = x, λ3 = y, λ4 = z are the standard ansatz-functions on the ref-
erence tetrahedraT = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} with αT = 256 andP1 the
set of linear polynomials. Moreover, numerical tests with the non stable P1/P1-ansatz are
considered.

Algorithm 1 Chorin based projection scheme

1: With vn known computêv = vn(X (t)).
2: Computev from the elliptic boundary value(I− κ∆)v = v̂ −∇qn in Ω with

boundary condition from (1) andq = 0 onΓout.
3: Solve Poisson-equation for the pressure correctionπ = qn+1 − qn

−∆π = −div v/dt in Ω , ∂nπ = 0 on∂Ω.

4: With π known computevn+1 = v − dt∇π, qn+1 = qn +∇π.

The Poisson equation forπ in step three is obtained by requiring the velocityvn+1 to be
divergence free. The species equation was also solved with the characteristic approach.

3 Numerical Results

The numerical simulation has been carried out with our parallel adaptive finite element
frameworkpadfem2, see ([BKM03]). First we discuss the cylinder benchmark results. The
reference values from ([Joh02, BR05]) for the pressure difference and the drag and lift
coefficients are presented in Table 1. The computation of the drag coefficientcd and lift
coefficientcl depends on the drag an lift force given by the following boundary integrals,
Fd =

∫
CS

ρν
∂uτ1
∂n

ny − pnx dA , Fl =
∫

CS
ρν

∂uτ1
∂n

nx + pny dA. The coefficientscd and

cl are then defined bycd = 2Fd

ρU
2
DH

cl = 2Fl

ρU
2
DH

. For the computation of the boundary

integrals over the cylinder surfaceCS, a volume based approach is used, see ([Joh02]).
The reference interval for the pressure differencePD = PF − PB computed at the points
PF = (0.45, 0.2, 0.205) andPB = (0.55, 0.2, 0.205) is given byPD ∈ [0.165, 0.175].

Meshsize cd cl PD

Reference 6.1853267 9.400983e − 3 1.708754e − 1
40768 6.557287 1.192181e − 3 1.683390e − 1
623513 6.337317 1.262727e − 3 1.719964e − 1
4988104 6.440238 2.240121e − 2 1.688929e − 1

Table 1: Reference and Meanvalues

The reference values for the drag and lift coefficient are presented in Table 1. Figure 2
shows the error to the reference values computed by John. Next we consider the results
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Figure 2: Error to reference values

of the mixing benchmark problem, see also ([War03]). Figure 3 (left picture) presents dif-
ferent mean values. The black and grey dotted curves show the minimum and maximum
distribution of the species along the mixing channel and the solid one the mixing quality.
The mixing quality is computed by the formulaMG = 1− (〈(c−〈c〉)2〉)/(〈c〉〈cmax−c〉).
In Figure 3 (right picture) one can see the pressure mean values along the mixing chan-

Figure 3: Meanvalues and species distribution

nel. A comparison and computation of reference values of this benchmark results is still in
progress. All computations were performed on a 200 Compute-Node Cluster-System with a
high speed Infiniband-Network. Each node consists a Dual INTEL Xeon 3.2 GHZ EM64T
main board with 4 GB main memory. The peak performance of the system is 2.6 TFlops
and allows a memory usage up to 896 GB. In the following some characteristic simulation
data using 32 nodes is presented. This includes parallel mesh loading, halo constructing
and the computation time of Algorithm 1. In the parallel casepadfem2uses an overlapping
technique for the partitioning, e.g. each partition knows the first neighbor elements from its
neighbor partition. This overlapping region is called halo. Table 1 shows the data overhead
for the halo constructing given in percent depending on the original sequential mesh. Table
2 presents the time in seconds needed for solving a Navier-Stokes time step. The mesh
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dimensions for this computation are M1=857758, M2=5901445, M3=43519497 volumes.

Type M1 M2 M3
N 56 27 14
E 45 22 11
F 40 19 10
V 37 18 9

Table 2: Halo-Overhead

Mesh Load Refine Halo RES-(X,Y,Z) PRES TP
M1 2.232 - 0.282 0.311 0.814 0.061
M2 2.345 0.968 0.280 1.224 8.985 0.832
M3 0.259 14.568 4.724 9.121 246.373 3.062

Table 3: Simulation time

A standard conjugate gradient solver was used for solving the linear systems of equations
and as expected, the most expensive part is the solution of the pressure correction term.

4 Summary

In this paper we demonstrate two benchmark problems solved with the parallel adaptive
finite element toolpadfem2. The computed results were compared to reference values and
exhibit an accuracy in the interval[10−3, 10−1]. The future work is related to study other
finite element approaches, for example the Tayler-Hood element, using preconditioned con-
jugate gradient solver and alternative Stokes solver.

References

[BKM03] S. Blazy, O. Kao and O. Marquardt. padfem2 – An Efficient, Comfort-
able Framework for Massively Parallel FEM-Applications. In J. Dongarra,
D. Laforenza, and S. Orlando, editors,Proc. of the European PVM/MPI User’s
Group Meeting, volume 2840 ofLNCS, pages 681–685. Springer, Sep. 2003.

[BR05] M. Braak and T. Richter. Solutions of 3D Navier-Stokes Benchmark Problems
with Adaptive Finite Elements.Computers and Fluids, 2005.

[Cho68] A.J. Chorin. Numerical solutions of the Navier-Stokes equations.Math. Comp.,
22:745–762, 1968.

[GR96] V. Girault and P. Raviart.Finite Element Methods for Navier–Stokes Equations.
Springer Series in Computational Mathematics, Springer Verlag, 1996.

[Joh02] V. John. Higher order finite element methods and multigrid solvers in a bench-
mark problem for the 3D Navier-Stokes equations.Int. J. Numer. Meth. Fluids
2002, 40:775–778, 2002.

[Pir89] O. Pironneau.Finite Element Methods for Fluids. John Wiley Sons, New York,
1989.

[Pro97] A. Prohl.Projection and Quasi-Compressibility Methods for Solving the Incom-
pressible Navier-Stokes Equations. BG Teubner, Stuttgart, 1997.

[War03] D. Bothe M., Hoffmann M., Schlueter N., Räbiger, S. Blazy, C. Stemich, H.-J.
Warnecke. Experimental and numerical investigations of t-shaped micro-mixers.
pages 269–276, 2003.

6


