
Collaborative and Interactive CFD Simulation
using High Performance Computers

Petra Wenisch,
Andre Borrmann, Ernst Rank, Christoph van Treeck

Technische Universität München∗

{wenisch, borrmann, rank, treeck}@bv.tum.de

Oliver Wenisch
Leibniz Rechenzentrum M̈unchen†

wenisch@lrz.de

Abstract
This paper presents a prototype application of a collaborative computational steer-

ing system for interactive computational fluid dynamics (CFD) simulations. One or
more visualization clients allow the user to interact with the concurrently running
CFD simulation. To provide interactivity even for high resolution runs the parallel Lat-
tice Boltzmann-based simulation kernel is performed on a high performance computer
(HPC), e.g. the Hitachi SR8000 of the LRZ (Leibniz Computing Center) Munich. This
kind of online simulation tool enables engineers to investigate and discuss several case
studies interactively to obtain an intuitive understanding of detailed calculations.

1 Motivation

Numerical simulations in the domain of fluid mechanics are nowadays considered to be an
important supplement to classical wind tunnel experiments in engineering practice. Typ-
ically, these simulations are realized as a batch process consisting of the following inter-
dependent steps: A time-consuming pre-processing step maps CAD data to computational
grids and defines boundary conditions, followed by the computation and a post-processing
analysis. These steps are usually carried out on different hardware systems and the data is
transferred by means of file interfaces.
Unfortunately, the pre-design phase of buildings usually lasts only a short time and later
changes to the design incur a dramatic increase in costs. Therefore, an interactive tool is de-
sired to be able to quickly perform several case studies for preliminary investigations, pos-
sibly followed by just a few carefully selected simulations with more details. In addition,
the building industry is fragmented into numerous involved disciplines working together in
a highly cooperative process. The cooperative and interactive CFD application presented
here was developed with this kind of procedure in mind.

∗Lehrstuhl f̈ur Bauinformatik, Arcisstrasse 21, D-80290 München, Germany, http:www.inf.bauwesen.tu-
muenchen.de

†Leibniz Rechenzentrum, Barerstrasse 21, D-80333 München, Germany, http:www.lrz.de



2 Computational Steering of CFD Simulations

Computational steering integrates the three steps of pre-processing, computation and post-
processing into a single environment allowing for interactive control and modification of
the computational process during execution ([1]).
To achieve interactivity, a computational steering application requires the immediate re-
sponse of a simulation process to user interaction (e.g. adding, removing or replacing ob-
jects in a simulated scene). The main requirements for this purpose are fast computation,
short-latency communication between user and simulation as well as the rapid processing
of modifications due to user interaction.

2.1 Lattice Boltzmann Method and Grid Generation

The Lattice-Boltzmann method (LBM) has emerged as a complementary technique for the
computation of fluid flow phenomena. It is an explicitly designed method for solving fluid
dynamics problems ([2]). By computing the dynamics of particle densities for a discrete
number of velocities and directions at each grid point of spatially discretized scene appro-
priately, quantities such as mass and momentum are conserved to fulfill the hydrodynamic
laws. The Lattice-Boltzmann algorithm computes thecollision of microscopic, ‘virtual’
particles and updates the velocity distribution functions within each simulation time-step.
Because of the nature of interparticle collisions, this computation can be done for each
independent grid point. This leads to the massive parallelization capability of the LBM.
Following the collision, the new distribution functions are migrated to their neighboring
cells, which is referred to aspropagation.
Typically, the LBM is implemented on uniform Cartesian grids, thus permitting fast, auto-
matic grid generation. This aspect is an essential requirement of an interactively steerable
CFD application allowing modifications of the geometry, e.g., by inserting or deleting fluid
obstacles. In our application, the user can load arbitrary triangular, CAD-generated geome-
tries which the grid generator (see [3]) transforms (and transfers) onto a uniform Cartesian
grid representation (Fig. 1). The corresponding voxelization algorithm for an optimized
grid generation is based on the hierarchical space-partitioning concept of octrees and is
parallelized very efficently using OpenMP.

2.2 Parallelization and Optimizing of the Computation Kernel

Special care has been taken to take full advantage of the vectorization and parallelization
capabilities of the specialized Hitachi SR8000 hardware ([4]). This system is a pseudo-
vector machine with 168 SMP nodes, each consisting of 8 computation CPUs. Eight nodes
are available for interactive use.
To parallelize the CFD computation, the fluid domain is divided up into slices along the
x-axis and each slice is assigned to one SMP node. Vendor-optimized MPI libraries are
used for communication between these SMP nodes. Within one SMP node the main com-
putation loops have been parallelized using compiler directives in the so-called COMPAS1

1COMPAS: Co-operative Micro Processors in Single Address Space

2



Figure 1: Discretization of a CAD-generated geometry: On the left a plant object’s approx-
imation using 30014 triangles is shown facing its discrete representation (30074 voxel,
grid resolution 100x100x100) on the right. The voxelization takes only 0.19 seconds on an
AMD Dual Opteron with 2.4 GHz.

mode. The powerful vectorization and software pipelining abilities of the SR8000 signif-
icantly speed up the computation of these loops . The code has been especially rewritten
in order to exploit these capabilities to the full. The data layout has been optimized for
the collision step by storing all the velocity distributions on each node contiguously in the
memory and integrating the propagation into the collision loop. To enable software pipelin-
ing conditional statements have been replaced by equivalent floating point operations, i.e.,
boolean expressions are mapped onto real-valued coefficient arrays for multiplication. The
resulting simplified loop structure enabled the compiler to analyze and optimize the code
more effectively. Fig. 2 points out the dramatic increase in performance.

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

weak scaling

strong scaling

ideal scaling

weak scaling before 
optimization

# comute nodes (8 CPUs each)

M
Lu

p/
s

Figure 2: Offline simulations without steering and visualization: The application shows
good performance measured in MLup/s (million lattice site updates per second) and high
efficiency for strong and weak scaling with 86 and 89 %, respectively. Additionally, the
plot visualizes the striking improvement in performance as compared to the non-optimized
version of the code.

3



2.3 Communication

Since computation and visualization are each performed on specialized hardware, a het-
erogenous hardware set-up is usually required. Therefore, the resulting data have to be
sent to the visualization client while data describing the current simulations and fluid pa-
rameters have to be forwarded simultaneously to the supercomputer, as well. Since user
interactions are spontaneous occurrences, regular communication intervals cannot be ap-
plied without loss of performance. Because of these interactions, the result data are only
sent at regular intervals as long as no modifications have taken place. The data flow and
the main components of the interactive application can be seen in Fig 3. A communicator
node (SIM-M) has been introduced on the supercomputer to coordinate communications
without interrupting computation. The communication node collects the result data from all
computation slaves (SIM-S) and sends it to the visualization workstation as a single mes-
sage to avoid additional latencies. Incoming data due to user interaction is pre-processed on
the communicator node and then distributed to the slaves according to their fluid domain.
Introducing this additional node on the supercomputer considerably increases the overall
performance of the application, because of the reduction in communication latencies and
the overlap of computation and communication. Details of the communication concept and
the performance measurements can be read in [5].

VIS SIMM

SIMS SIMS SIMS SIMS SIMS

interactiondata

propagation

e.g. Hitachi SR8000

MPICHG2/PACXMPI

vendoroptimized MPI

e.g. SGI Onyx2

computation results

computation grid &
computationdata

VIS SIMM

SIMS SIMS SIMS SIMS SIMS

interactiondata

propagation

e.g. Hitachi SR8000

MPICHG2/PACXMPI

vendoroptimized MPI

e.g. SGI Onyx2

computation results

computation grid &
computationdata

Figure 3: Application scheme showing the visualization (VIS) and the simulation con-
sisting of a master node (SIM-M) and computation slaves (SIM-S). At the LRZ, the VIS
process is usually run on a separate graphics workstation, whereas the simulation uses sev-
eral nodes on the Hitachi SR8000. Within the SR8000, all processes communicate via a
vendor-optimized version of MPI. Inter-machine communication between VIS and SIM-M
is implemented using either Globus MPICH-G2 ([6]) or PACX MPI ([7]). The simulation
side transfers its most recent pressure and velocity fields to the visualization at short in-
tervals. Throughout the ongoing computation, the user is able to analyze these results and
even change the scene geometry or simulation parameters, as required.

4



3 Collaborative Engineering

In order to support the synchronous collaboration between engineers at different locations
during the planning of HVAC (Heating Ventilation Air-Conditioning) systems, the inter-
active application described in 2 has been extended to a distributed collaboration platform
which enables the participating engineers to work with the interactive CFD simulation si-
multaneously. It serves as a distributed multi-user application, i.e., everyone participating
in the collaborative session can work interactively with this application by means of an
individually configurable human-machine interface.
The basic architecture of the conceived platform consists of a central collaboration server,
an arbitrary number of clients and possibly an arbitrary number of simulation servers. Fig. 4
shows these components and the communication paths between them. Each of the compo-
nents can be run on a different machine, different clients can receive data from different
simulation servers and not all of the clients necessarily have to receive simulation data.

Figure 4: Overview of the multidisciplinary collaboration platform. Clients may contact
different servers, or no simulation server at all; however, they need to have access to a
collaboration server to report changes or be notified about changes to the application set-up
which may have been initiated by other users. The collaboration server, of course, has to
forward incoming modification signals to the simulation.

The collaboration server has to perform several tasks such as the managing of registered
users, their roles and rights, managing of the common model, and controlling concurrency.
It also has to manage the simulation servers, their locations, their start-up and steering
parameters. Each of these tasks corresponds to a dedicated module in the collaboration
server (see Fig. 5). The core of the collaboration server is the model management module.
The common model is basically a geometric model to which additional non-geometric
information can be attached. In order to support the evolution of the capabilities of available
simulators, the structure of the semantic part is not hardwired, but can be extended by
means of a meta-model ([8]).
In the case of our CFD application, the common model represents the obstacles in the
fluid domain and the fluid domain hull. The boundary conditions (e.g. pressure, velocity
or temperature conditions), which are managed as semantic data attached to the geometric
objects, are of special importance.

5



Figure 5: The modules of the collaboration server

Modifications like adding, removing or transforming obstacles are communicated from
the performing client to the collaboration server. In order to avoid conflicts among the
participants, the collaborative work is coordinated by means of locks. If an object is locked
by a certain user it cannot be modified by any other user until the lock has been released.
The collaboration server provides an event service which the clients can access in order to
obtain details of any modifications.
The clients serve as the visualization and interaction interface for the engineers taking part
in the collaborative session. They can be run in single-window mode capable of stereo-
scopic rendering for use in virtual reality environments, or in multi-window mode for use
on desktop computers.
The major task of a simulation server is to link the distributed collaborative system with a
particular simulation kernel. Like the clients, the simulation server listens in to the events
broadcast by the collaboration server. Accordingly, it is notified of any user interaction and
can forward this information to the simulation kernel. The simulation server provides an
interface to start and stop the simulation and to pass on steering parameters. It notifies all
clients when the simulation is started or stopped.

4 Conclusion

We have presented an interactive CFD application (Fig. 6), enabling several users to col-
laborate in interactive simulation and visualize its resultant data. In both versions (collabo-
rative and non-collaborative), the visualization can be done in a virtual reality environment
or on common desktop screens. Because of the fast simulation kernel and efficient com-
munication model, the interactive simulation reacts instantly to user interaction such as
modifying the geometry within a simulation domain. In future improvements, a thermal
and turbulence model will be integrated into the simulation kernel as proposed in [9].

Acknowledgements

We wish to express our gratitude and thanks to KONWIHR (Competence Network for
Technical, Scientific High-performance Computing) and Siemens AG for funding this re-
search work.

6



Figure 6: Snapshots of air-flow configurations for two different furniture scenarios of an
office room in an interactive case study.

References

[1] Mulder, J. D., Wijk, J. van, Liere, R. van: A Survey of Computational Steering Envi-
ronments, Future generation computer systems, 15(2), (1999)

[2] Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford
University Press, ISBN 0 19 850398 9, (2001)

[3] Wenisch, P. and Wenisch, O.: Fast octree-based Voxelisation of 3D Boundary
Representation-Objects, Technical Report, LS Bauinformatik, TU München, Germany
(2004)

[4] Wenisch, P., Wenisch, O., and Rank, E.: Optimizing an Interactive CFD Simulation on
a Supercomputer for Computational Steering in a Virtual Reality Environment, in High
Performance Computing in Science and Engineering, Garching 2004, Springer, ISBN
3 540 26145 1, (2005)

[5] Wenisch, P., Wenisch, O., and Rank, E.: Harnessing High-Performance Computers for
Computational Steering, in Lecture Notes in Computer Science, Volume 3666, at press.

[6] http://www3.niu.edu/mpi

[7] http://www.hlrs.de/organization/pds/projects/pacx-mpi

[8] Borrmann, A., Wenisch, P., Treeck, C. v., Rank, E.: Collaborative HVAC design using
interactive fluid simulations: A geometry-focused collaboration platform. In: Proc. of
the 12th International Conference on Concurrent Engineering, Fort Worth (2005)

[9] Treeck, C. v.: Geb̈audemodell-basierte Simulation von Raumluftströmungen, PhD The-
sis, LS Bauinformatik, TU M̈unchen (2004)

7


