
Accelerating Double Precision FEM Simulations
with GPUs

Dominik Göddeke
dominik.goeddeke@math.uni-dortmund.de

Universiẗat Dortmund, Fachbereich Mathematik
Vogelpothsweg 87, 44 227 Dortmund

Robert Strzodka
strzodka@caesar.de

caesar research center
PO Box 120 260, 53 044 Bonn

Stefan Turek
ture@featflow.de

Universiẗat Dortmund, Fachbereich Mathematik
Vogelpothsweg 87, 44 227 Dortmund

Abstract

In visualization and computer graphics it has been shown that the numerical solution of
PDE problems can be obtained much faster on graphics processors (GPUs) than on CPUs.
However, GPUs are restricted to single precision floating point arithmetics which is insuf-
ficient for most technical scientific computations. Since we do not expect double precision
support natively in graphics hardware in the medium-term, we demonstrate how to acceler-
ate double precision iterative solvers for Finite Element simulations with current GPUs by
applying a mixed precision defect correction approach. Our prototypical algorithm already
runs more than two times faster than a highly tuned pure CPU solver while maintaining the
same accuracy. We present a series of tests and discuss multiple optimization options.

1 Introduction

Over the last two years, programmable commodity graphics processors (GPUs) have gained
a lot of interest outside the field of computer graphics because of their astonishing memory
bandwith and tremendous floating point computational power. A new field of research com-
monly calledgeneral purpose computation on graphics hardware(GPGPU) has emerged.
We refer the reader to [3] for a survey of this research field with extended references, and
to [2] for online material with introductions, example codes and further information.

The number of different applications presented in the survey shows the attractiveness of
the GPU as a numerical co-processor. Especially in the computationally intensive field of

partial differential equations (PDEs) various problem types such as the diffusion equation,
the wave equation, the Poisson problem or the Navier-Stokes equations have been success-
fully implemented [3]. GPUs are particularly suitable for these computations as Finite
Difference or (structured) Finite Element Method (FEM) schemes map naturally to the data-
stream based paradigm that GPUs employ. However, in real-world problems which require a
highly accurate solution, GPUs have not been used so far due to the restricted computational
precision. Current GPUs support quasi-IEEE 754 conformalhalf (s10e5) andsingle(s23e8)
precision floating point formats, and we do not expect native hardware support fordouble
(s52e11) precision arithmetics in the medium-term. Double arithmetics can be emulated
with single floats, also on GPUs1. But such emulations increase more than tenfold the
operation count. This is only acceptable in otherwise bandwidth bound operations.

In this paper we, therefore, propose the revitalization of mixed precision defect cor-
rection approaches that have been known for almost 100 years: By iteratively computing
residuals of a single precision approximate solution to a linear system in double precision,
only few correction steps suffice to reduce approximation errors close to machine accuracy.
In the context of scientific computing using GPUs, this approach translates to correcting a
GPU result with just a few CPU-based iterations. In this way we obtain thefull accuracy
of CPUs with thehigh speedof GPUs. In particular, GPUs can now be used to accelerate
technical applications which require the computational results to be sufficiently accurate in
terms of quantities like e.g. drag and lift values. Obviously, this task goes far beyond the
real-time visualization of qualitatively correct solution profiles.

To estimate possible performance gains we have first benchmarked FEM building blocks
such as vector-vector operations and banded matrix-vector multiplication on the CPU. Due
to inherently cache-unfriendly memory access patterns, most Finite Element codes exhibit
a massive decline in (computational) efficiency [4] once the number of unknowns exceeds
the cache capacity of common CPUs. Next we have studied and performed our own GPU
benchmarks2. The results show that GPU performance is asymptotically converse: For
small problems, CPUs outperform GPUs by far, but for the more interesting large problem
sizes, GPUs are able to deliver several GFLOP/s of sustained performance. For the tested
FEM building blocks the GPU outperforms highly optimized cache-aware CPU implemen-
tations by a factor of 5 to 20. Thus the GPU is an ideal co-processor in a mixed precision
defect correction method applied to FEM simulations.

This technique of CPU–GPU–coworking maps harmoneously into our FEAST [5] frame-
work. By applying domain decomposition, the global solution of a huge problem is split into
a sequence of local subproblems (each with up to106 unknowns) which we plan to solve
on the GPU. By using generalized tensorproduct meshes’ in contrast to regular cartesian
grids (each inner node has to be incident to exactly 4 cells, but the cells can be arbitrar-
ily shaped), we can resolve complex geometries and deform the mesh to concentrate cells
based on a-posteriori error estimation [1] while still being able to apply highly optimized
fast data structures for regular meshes and use the GPU.

1Emulated double precision in the Gaia project at the Lawrence Livermore National Laboratory:
www.ll.mit.edu/HPEC/agendas/proc04/powerpoints/Talks-OPEN/Tues/johnson.ppt

2Workshop:GPUs as FEM co-processors, www.mathematik.uni-dortmund.de/ ∼goeddeke/

The remainder of this paper is organized as follows. Section 2 describes and analyzes
our approach; Section 3 provides a thorough evaluation w.r.t. robustness, accuracy and
applicability. We finish with conclusions and future work in Section 4.

2 CPU–GPU–Solver

We present a mixed precision defect correction algorithm for the iterative solution of linear
equation systems. The core idea of the algorithm is to split the solution process into a
computationally intensive but less precise inner iteration running in 32 bit on the GPU and
a computationally simple but precise outer correction loop running in 64 bit on the CPU.
Our approach can be easily implemented on top of an existing GPU-based single precision
iterative solver in applications where higher precision is necessary. The algorithm requires
two input parameters,εinner andεouter as stopping criteria for the inner and outer solver
respectively. LetA denote the (sparse) coefficient matrix,b the right hand side,x the initial
guess for the solution and a scaling factorα. Subscript32 indicates single precision vectors
stored in GPU memory and64 indicates double precision vectors stored in CPU memory.

1. Set initial values:α64 = 1.0, x32 = x64 = 0.

2. Iterate inner solver until||b32 −A32x32|| < εinner.

3. Transfer inner solution to CPU and update outer solution:x64 ← x64 + α64x32.

4. Calculate defect in double precision:d64 = b64 −A64x64.

5. Calculate norm of defect:α64 = ||d64||
6. Check for convergence (α64 < εouter); otherwise scale defect:d64 = α−1

64 d64.

7. Set new initial guess and RHS:x32 = 0, b32 ← d64, goto step 2

Note that only a single matrix-vector multiplication and norm calculation is required on
the CPU in each iteration. This is the basic form of the algorithm. We are currently testing
different variants and extensions and will report on them in the future. For example, a simple
but effective performance increase can be obtained by not checking for convergence of the
inner solver after every step, but checking heuristically at regular intervals depending on the
expected convergence behaviour of the inner solver, e.g. a full-scale multigrid is converging
much better than a conjugate gradient approach and thus requires less inner iterations and
more frequent convergence checks. Our experiments (cf. Section 3.3) indicate that this
can be controlled effectively by adjusting the inner stopping criterionεinner. Additionally,
asynchroneous transfers for convergence checks are worth further examination. Instead of
flushing the GPU pipeline for a read-back to the CPU of the norm of the defect, we may
start the (potentially superfluous) next iteration on the GPU and wait for an asynchronous
read-back to finish while the GPU is computing. Finally, we can exploit the fact that the
GPU is idle when the defect correction is performed on the CPU.

Although here we are concerned with a 32/64 bit combination to obtain double precision
results, it is worth mentioning that this defect correction method can also be used as a 16/32

bit combination on the GPU. Half precision results can be updated to single precision, while
taking advantage of the 50% bandwidth reduction and the implied performance increase.

3 Evaluation and Results

3.1 Test description

For a given test function, we solve the Poisson equation−∆u = f with Dirichlet bound-
ary conditions onΩ = [0, 1]2. Conforming bilinear Finite Elements (Q1) are used for the
spatial discretization for different levels of refinement (N = 32 to N = 10252 unknowns).
Physically, this can be interpreted as calculating the deflection of a membrane fixed at its
boundaries and stressed with the force distribution given by the right hand side. For sim-
plicity, we use an unpreconditioned conjugate gradient3 solver. The error analysis below is
performed with the test functionu0(x, y):= x(1 − x)y(1 − y). The error shown in Tables
1 and 2 is measured nodewise with the scaledl2 norm (approximateL2) of the analytic
solution and our computed results. Reference data on the CPU is obtained using the cache-
aware highly optimized FEAST simulation package [5] on an Opteron 250 Linux node (4
GFLOP/s LinPack). GPU timings were taken on a GeForce 6800 graphics card (AGP).

3.2 Influence of input data precision

In the first test series, we analyze the influence of the input data precision on the overall
error. The right hand side is therefore computed as the discrete Laplacianf := −∆hu0

to avoid discretization errors and then used in double, single or half4 float precision. The
computation itself is performed in the CPU reference solver and the GPU-based defect
correction solver with full accuracy.

f16 (CPU) f16 (GPU-CPU) f32 (CPU) f32 (GPU-CPU) f64 (CPU) f64 (GPU-CPU)
2.333 · 10−6 2.333 · 10−6 7.718 · 10−10 7.717 · 10−10 2.750 · 10−13 2.806 · 10−13

1.008 · 10−6 1.008 · 10−6 7.726 · 10−10 7.725 · 10−10 1.051 · 10−12 1.049 · 10−12

Table 1: Error caused by varying input data precision (f16, f32 and f64) for a pure CPU
solver and our combined GPU-CPU approach, both using double precision to solve until
the norm of the residual drops below10−12. Problem sizeN = 2572 andN = 5132.

We observe that representing all involved vectors in double precision is essential. Al-
though the computation is always performed in 64 bit, the reduction of the right hand side
to 32 bit already costs approximately 3 digits of accuracy. The furthergoing reduction to 16
bit costs additional 3 digits. This shows that it does not make sense to improve the internal
computational precision of the graphics pipeline without introducing a higher precision for-
mat for input and output. Even if the kernel programs on the GPU could compute in double
precision this would be of little use if the input and output formats remained single float.

3The (unoptimized) implementation is based on the ’outdated’ OpenGL pBuffer technique which implies
additional performance penalties. We expect better performance with the new ’framebuffer object’ technique.

4A CPU implementation of thehalf data type is available as part of the OpenEXR library.

Our defect correction approach, however, is very suitable for utilizing the reduced pre-
cision of GPUs in a way which does not harm the final result. We see that the GPU-CPU
approach is hardly any worse than the pure computation on the CPU. Consequently, current
GPUs may not be used for direct high precision computations, but are good at improving a
double precision result via defect corrections.

3.3 Overall error and performance results

In this test we analyse the overall error of the continuous problem and the performance of
the different approaches. The right hand sidef := −∆u0 is computed with the continuous
Laplacian to obtain the continous problem−∆u = f in Ω with the analytically known
solution u = u0. We run the pure CPU and the GPU-CPU solver at half, single and
double precision, with the input data in the corresponding precision and solve untilεouter <
10−12. Table 2 summarizes the computed differences to the analytical reference solution
for different refinement levels (number of unknowns).

N CPU16 GPU-CPU16 CPU32 GPU-CPU32 CPU64 GPU-CPU64
32 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3 5.208 · 10−3

52 1.444 · 10−3 1.509 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3 1.440 · 10−3

92 2.675 · 10−4 7.556 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4 3.869 · 10−4

172 4.047 · 10−4 2.332 · 10−3 1.015 · 10−4 1.016 · 10−4 1.015 · 10−4 1.015 · 10−4

332 2.120 · 10−3 2.253 · 10−3 2.611 · 10−5 2.648 · 10−5 2.607 · 10−5 2.607 · 10−5

652 noise noise 6.464 · 10−6 8.324 · 10−6 6.612 · 10−6 6.612 · 10−6

1292 noise noise 1.656 · 10−6 8.554 · 10−6 1.666 · 10−6 1.666 · 10−6

2572 noise noise 5.927 · 10−7 2.781 · 10−5 4.181 · 10−7 4.181 · 10−7

5132 noise noise 2.803 · 10−5 1.119 · 10−4 1.047 · 10−7 1.047 · 10−7

10252 noise noise 7.708 · 10−5 4.463 · 10−4 2.620 · 10−8 2.620 · 10−8

Table 2: Errors for different solver accuracies both on the CPU and on the GPU.

First let us note that in a given visualization of the results, there is no discernible dif-
ference forN ≥ 172, whereas the quantitative differences are obvious from Table 2. The
impact of the solver accuracy is clearly visible: Despite the simplicity of the test func-
tion, half and single precision are insufficient to approximate it using a Finite Element
discretization. For the first few levels, the discretization error dominates and decreases by
the expected factor of 4 in each refinement (increase in problem sizeN). From level 3 and
6 on (half and single precision respectively), the lack of precision dominates the error and
even worse, further refinement of the computational mesh increases the error due to worse
matrix conditioning. Additionally, observe the difference in accuracy in half and single pre-
cision between the CPU and the GPU. On the other hand, the defect correction algorithm
yields the same accuracy as the reference solver running completely on the CPU in double
precision, independent of the inner threshold.

For the performance comparison, we only takeN ≥ 2572 into account, since the CPU
with its large cache naturally outperforms the GPU for smaller problems. Table 3 summa-
rizes runtimes and iteration counts depending on the inner stopping criterion. It shows the
overall GPU timings including the necessary data transfer and the CPU corrections.

N Iterations CPU Time CPU Iterations GPU Time GPU Iterations GPU Time GPU
2572 303 2.32s 926 (6) 5.53s 1151 (4) 6.68s
5132 601 19.47s 1885 (6) 8.34s 2744 (5) 11.59s

10252 1191 146.90s 4378 (7) 60.16s 6385 (6) 86.84s

Table 3: Performance results for the double precision solver: CPU reference solver, GPU-
CPU solver withεinner = 10−2, GPU-CPU solver withεinner = 10−8. Results are summed
over all inner iterations, the number of outer iterations is listed in brackets.

We see that the combined GPU-CPU solver with a high inner stopping criterion (10−2)
is fastest. This requires more outer iterations on the CPU, but they are relatively cheap.
The 7 defect correction steps for the largest problem take2.41sec CPU computing time and
0.26sec transfer time. So in addition to the optimizations discussed in Section 2, the choice
of εinner and the inner solver will have to be examined closely for an optimal GPU-CPU
interplay. But even without these future optimizations the current solution is already2.3
times faster than the pure CPU solver, if the vector size exceeds the CPU cache size.

4 Conclusions

We have presented a preliminary approach to accelerate double precision Finite Element
simulations using the GPU as a co-processor. The main virtue of the defect correction
algorithm is the equally good accuracy as compared to a double precision CPU solver.
The second goal of significantly improved performance has also been achieved. We have
outlined that without impairing the accuracy further performance gains may be expected
through a better controlling of the algorithm’s parameters. We will follow these lines to
provide an efficient embedding of the GPU as a numerical co-processor for established
double precision PDE packages on parallel computers.

References

[1] Grajewski, M., K̈oster, M., Turek, S.:Numerical Analysis and Practical Aspects of
a Robust and Efficient Grid Deformation Method in the Finite Element Context. To
appear.

[2] Harris, M.J.: General Purpose Computation on GPUs,http://www.gpgpu.org

[3] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M.J., Krüger, J.,Lefohn, A.E.,
Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware.
Eurographics 2005, State of the Art Reports (2005), pp. 21-51.

[4] Turek, S., Becker, Ch., Killian, S.:Consequences of modern hardware design for
numerical simulations and their realization in FEAST. Proceedings of Euro-Par ’99
(1999), pp. 643-650.

[5] Turek, S., Becker, Ch., Killian, S.:Hardware-oriented Numerics and concepts for
PDE software. Special Journal Issue for PDE Software FUTURE 1095 (2003), pp.
1-23.

	Introduction
	CPU--GPU--Solver
	Evaluation and Results
	Test description
	Influence of input data precision
	Overall error and performance results

	Conclusions

