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Abstract

We present a new phase-field model with fluid flow which has the capability of study-
ing the effect of fluid flow on crystal growth structures by numerical simulations. The
model contains a set of phase-field equations describing the evolution of the phase states
in the system coupled with the Navier-Stokes equations for fluid flow. The recently de-
veloped simulator for solving these equations is based on a finite difference method on
a rectangular staggered grid. The pressure and the phase state variables are located in
the cell centers whereas the three-dimensional velocity components are computed in
the midpoints shifted by half a grid spacing of the three types of cell edges parallel to
the coordinate axes. To improve the efficiency of the code, we use adaptive algorithms
and parallelization techniques to perform the iterations. The time discretization is ac-
complished by an implicit successive overrelaxation (SOR) method for the pressure
iteration and an explicit scheme for updating all other variables. Numerical results of
Couette flow across a planar solid-liquid solidification front and of flow around parti-
cles with diffuse interfaces are discussed.

1 Introduction

From experiments, it is well known that fluid flow has a great influence on the solidification
structure during a casting process. The presence of flow admits the possibility of instabili-
ties due to the flow itself, in addition to the morphological instabilities normally found in
crystal growth. Hence, flow has an important influence on the process conditions and on
the resulting material properties during the solidification from a melt. It is an inherently
three-dimensional phenomenon where solute is transported in the spatial domain and
around the growing crystals.

In the research field of modelling solidification microstructures in 3D, the phase-field
formalism has become of great importance. The introduction of a diffuse phase-field
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variable with a smooth transition at a phase boundary enables the numerical computation
of complex structures such as dendrites and multiphase structures for the first time. In
[1], the growth of dendrites with and without fluid flow was simulated on the basis of a
phase-field approach. The power of the methodology lies in its computational applicability
leading to new and advanced insights in the processes of pattern formation.

We extend a recently formulated phase-field model for multiphase systems in [2] to de-
scribe the influence of fluid flow on the microstructure evolution. The equations of motion
are solved numerically by using finite differences on a staggered grid, parallel and adap-
tive algorithms to improve the efficiency of the solver. The model is summarized in Sec.
2 and the discretization is described in Sec. 3 followed by an illustration of a flow chart
of the code structure in Sec. 4. We complete the paper with two examples of fluid flow at
solid-liquid interfaces.

2 Phase-field model with fluid flow

To treat crystal growth under the influence of convection, as is inevitable in realistic so-
lidification environments, a coupling of the phase-field model and fluid dynamics must be
realized. We restrict the problem to quasi-incompressibility, where the density of the fluid
(melt), in which the growing crystal evolves, does not depend on pressure, but may depend
on concentration or temperature. The basic idea is to describe the crystal not as an exter-
nal obstacle but as a fluid with a viscosity 50 - 500 times higher as compared to the melt.
Therefore, a space depending viscosity parameterµ(φ) is introduced, which averages the
two phase dependant values of the viscosity over the diffuse interface using two strategies
with different numerical stability:

µ(φ) =
N∑

α=1

µαφα (arithmetic) (1)

or
1

µ(φ)
=

N∑
α=1

φα

µα
(harmonic) (2)

Here,µα is the viscosity of phaseα and the variableφ is a vector-valued order parameter
φ = (φ1, . . . , φN ), where each componentφα represents the phase state or grain orienta-
tion of a certain phase or grain in the system. The phase-fieldsφα, α = 1, . . . , N take the
valuesφα ∈ {0, 1} in the bulk phases with a smooth transition in the region of a diffuse in-
terface thickness of widthε. Following an ansatz formerly published in [3, 4], a thermody-
namically consistent multi-phase-field model including the incompressible Navier-Stokes
equations was derived. The model is based on a total entropy formulation of a material
volumeΩ(t), given by

S =
∫

Ω(t)

[
ρs(φ)−

(
ε a(φ,∇φ) +

1
ε

w(φ)
)]

dV,



whereρ is the density ands the bulk entropy per mass unit. The second and thrid term in
round brackets represent all surface contributions and include the diffuse interface width
ε, the anisotropic gradient entropy densitya(φ,∇φ) and the multi-well potentialw(φ)
inherent to phase-field modelling. The physical laws of conservation of linear momentum,
mass, internal energy and the second law of thermodynamics (positive entropy production)
can be formulated as volume integrals and can be recasted into partial differential equations.
This results in the following set of evolution equations for the phase-field (order parameter)
variablesφα of all coexisting phases and for the velocity field~u:

τε
Dφα

Dt
= ε∇ ·

(
ρ

∂a(φ,∇φ)
∂∇φα

− ρ
∂a(φ,∇φ)

∂φα

)
− ρ

ε

∂w(φ)
∂φα

− ρ

T

∂f(φ)
∂φα

− λ (3)

ρ
D~u

Dt
= ∇ · (σ + θcap) = ∇ ·

[
− pI + µ(φ)

(
∇~u + (∇~u)T

)
+ θcap

]
(4)

∇ · ~u = 0. (5)

Eqs. (4) and (5) represent the modified fully incompressible Navier-Stokes equations. In
this context, the transport derivationD/Dt = ∂/∂t + ~u · ∇ is applied, mass and energy
balance equations are omitted. Except for the additionall.h.s advective term of the form~u ·
∇φα , the phase-field equation in Eq. (3) remains unchanged after coupling fluid dynamics.
For a comprehensive review of the phase-field model functions see [2]. The Navier-Stokes
Eq. (4) is supplemented by the capillary tensorθcap. The ’classical’ part of the stress tensor
σ contains the pressurep as a driving force of a liquid flow (I denotes the unity matrix) as
well as internal friction proportional to the viscosityµ(φ). The capillary interfacial forces
are represented byθcap which are important when dealing with structure dimensions in the
micron range; it can be related to the surface entropy densitya(φ,∇φ) in the phase-field
model as

θcap =
[
a(φ,∇φ)I −

N∑
α=1

(∂a(φ,∇φ)
∂(∇φα)

⊗∇φα

)]
, (6)

where⊗ denotes the tensor product and the summation extends over the number of allN
existing phases in the calculation domain.

3 Discretization

The set of partial differential equations (Eqs. (3)-(5)) is solved numerically by using a
finite difference discretization on a staggered grid, in which the different variables are
located at different grid points. The iteration of the Poisson equation for the pressure is
accomplished applying a successive overrelaxation method (SOR). As illustrated in Fig. 1
in 2D, the components of the velocity~ui,j =

(
ui,j , vi,j

)
are located in the midpoints of

the cell edges, the phase fieldsφα
i,j and the pressure in the center of a cell. In 3D, the phase

fieldsφα
i,j,k are computed in the center of a cell-cube and the velocity components~ui,j,k

are located in the center of the analogical side-area.



Figure 1: Location of the values on a staggered grid in 2D.

In the following, we exemplarily describe the discretization of some terms of the Eqs. (3) -
(5), particularly relevant for the coupling of phase-field and Navier-Stokes equations. The
discretized form of the term~u · ∇φα in Eq. (3) lies in theφ-grid and reads

~ui− 1
2 ,j− 1

2 ,k− 1
2
· ∇cφα

i,j,k =

 ui,j,k+ui−1,j,k

2
vi,j,k+vi,j−1,k

2
wi,j,k+wi,j,k−1

2

 ·


φα

i+1,j,k−φα
i−1,j,k

2∆x
φα

i,j+1,k−φα
i,j−1,k

2∆y
φα

i,j,k+1−φα
i,j,k−1

2∆z



=
1
4

{ (ui,j,k + ui−1,j,k)(φα
i+1,j,k − φα

i−1,j,k)
∆x

+
(vi,j,k + vi,j−1,k)(φα

i,j+1,k − φα
i,j−1,k)

∆y

+
(wi,j,k + wi,j,k−1)(φα

i,j,k+1 − φα
i,j,k−1)

∆z

}
,

where we use mean values for the velocities~ui− 1
2 ,j− 1

2 ,k− 1
2

and central differences for the
differential operator∇φα = ∇cφα

i,j,k.
The coupling of the Navier-Stokes Eq. (4) with the phase fields involves two terms: the
phase dependant viscosityµ(φ) in the irreversible viscous stress tensorτ = µ(φ)(∇~u +
(∇~u)T ) and the capillary tensorθcap of Eq. (6). We will demonstrate the discrete form of
τ , but, due to its complexity, we refer to a forthcoming paper for the discretization ofθcap,
since it involves the gradient entropiesa(φ,∇φ) and anisotropies of the phase-field model.



The divergence of the viscous stress tensor is given by

∇ · [τ ] = ∇ ·
[
µ(φ)(∇~u + (∇~u)T )

]
= ∇ ·

µ(φ)

 2∂xu ∂xv + ∂yu ∂xw + ∂zu
∂yu + ∂xv 2∂yv ∂yw + ∂zv
∂zu + ∂xw ∂zv + ∂yw 2∂zw

 ,

where∂x, ∂y and∂z of the velocity components denote the partial derivatives with respect
to the coordinatesx, y, z, respectively. To discretize∇ · [τ ], we use forward and backward
differences, i.e.∇l · [τ r] with

τ r =

(µ11(φ)τ11)r (µ12(φ)τ12)r (µ13(φ)τ13)r

(µ21(φ)τ21)r (µ22(φ)τ22)r (µ23(φ)τ23)r

(µ31(φ)τ31)r (µ32(φ)τ32)r (µ33(φ)τ33)r

 .

µ(φ) is calculated according to Eqs. (1) and (2). For the arithmetic expression in Eq. (1),
we obtain the discrete form ofτ r matching the staggered grid

(µ11(φ)τ11)r =

(
N∑

α=1

µαφα
i+1,j,k

)
· 2
(

ui+1,j,k − ui,j,k

∆x

)

(µ12(φ)τ12)r =

(
N∑

α=1

µαφα
i+ 1

2 ,j+ 1
2 ,k

)
·
(

vi+1,j,k − vi,j,k

∆x
+

ui,j+1,k − ui,j,k

∆y

)
,

whereφα
i+ 1

2 ,j+ 1
2 ,k

corresponds to the mean value

φα
i+ 1

2 ,j+ 1
2 ,k =

1
4

(φi,j,k + φi+1,j,k + φi,j+1,k + φi+1,j+1,k) .

The other components of the tensorτ r can be formulated in an analogous way.

4 Code structure

The phase-field solver and the Navier-Stokes solver are coupled as shown in the flow chart
in Fig. 2. The value∆tn is constant for each simulated time step. For numerical stability,
the time step∆tnNS

is calculated after each iteration of the Navier-Stokes solver. If the
next∆tnNS

exceeds∆tn, it is reduced to fit.

Early experiments have shown that∆tn necessary for a stable phase-field solution is greater
than∆tnNS

, so that the Navier-Stokes equations need several iterations to match the next
∆tn. This has a big impact on the calculation time. In addition, the SOR-iteration for the
Poisson equation needs a lot of CPU-cycles. Further development is needed to parallelize
the SOR-iteration with the help of OpenMP and MPI. Both parallelizing mechanisms are
already introduced in the phase-field solver and the results of the optimization efforts are
successful.



Figure 2: Flow-chart of the coupled phase-field and Navier-Stokes solver.

5 Simulation Results

In this section, the developed phase-field simulator with fluid flow is applied to model the
flow field in the presence of diffuse solid-liquid interfaces.

The first example in Fig. 3 is devoted to recover the velocity profile across a planar solid-
liquid interface known as Couette flow.

Figure 3: Approximation to Couette flow obtained from a phase-field simulation: a) Image
of the diffuse solid-liquid interface, b) stationary flow field in the presence of a moving
wall at the right, c) velocity profile across the diffuse interface.

For simplicity, we consider the situation where the system is isothermal and the densities of
both the solid phase and the liquid phase are constant and equal. We examine the influence
of the kinematic viscosityµ(φ) on the flow field. The distinction between the solid and the
liquid phase for the flow field is given by their different viscosities:µS/µL � 1. We take a
two-dimensionalx/y domain withNx andNy grid points coincident with a fixed left wall
at x = 0. The right wall atx = Nx · δx moves with a constant speed iny direction. In-
and out-flow conditions are set at the bottom and top of the domain. A planar diffuse solid-
liquid interface is located atx = Nx/2 parallel to they-direction and the solid phase is
posed in the left half. The simulation result is displayed in Fig. 3 for the caseµS/µL = 10.
Due to the difference in viscosities, the velocity profile has a much smaller slope in the
solid than in the liquid. A clear transition can be seen at the position of the interface. The
reason for a non-zero velocity in the solid lies in the model assumption that the solid phases



are treated as high viscous liquids. The absolute values of the flow in the solid depends of
course on the viscosity parameterµS . For the simulation in Fig. 3, the viscosity in the solid
was chosen only ten times as large as in the liquid. For larger values ofµS , the velocity in
the solid approaches zero.
In the simulation in Fig. 4, we considered the flow around diffuse and inert particles. The
velocity performs local accelerations, and almost no flow can be observed in the interior of
the particles.

Figure 4: Phase-field simulation of fluid flow around inert particles with a diffuse solid-
liquid interface boundary.
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