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1 Introduction
The choice of the mathematical model to describe the viscoelastic behavior of human tis-
sues is for numerical simulations of particular importance because of the obtainable accu-
racy. Especially within the medical profession exists a high interest in such simulations,
since their aim is to understand certain effects within the human body more in detail and
furthermore to be able to give forecasts as well as improvement opportunities for a medical
intervention.
One of these medical problems represents the voice production after a larynx excision as
consequence of e.g. laryngeal cancer. In this case the upper part of the esophagus, called
the pharyngeal-esophageal (PE) segment, can be used as basis for a substitute voice. The
geometry of this PE segment has hereby major influence on the engaging voice quality.
During surgery the surgeon is able to form the geometry of this PE segment. But until now
the surgeon has no precise guidelines or knowledge of how to shape it in an optimal way.
The target of this project is to build a simulation tool which is capable to value different
PE segment geometries in order to improve the quality of the substitute voice. A central
point thereby is the choice of the mathematical model to describe the viscoelasticity of
the vocal folds. The important phenomenon of viscoelasticity in the considered case is the
damping effect under periodic excitation, as these has direct influence on the displacement
amplitudes of the fold vibrations.

2 Mechanics
In order to give an overview of how mechanical damping can be considered appropriately
the basic equations of mechanics as well as their numerical discretization with the finite
element method (FEM) is discussed.

2.1 Basic Equations
The dynamical behavior of mechanical systems is described by Newton’s law

DIV [σ] + fV = ρ
∂2u

∂t2
, (1)



where [σ] denotes the Cauchy stress tensor, fV the mechanical volume force, ρ the mechan-
ical density and u the mechanical displacement [1]. Using Voigt notation the first term in
(1) can be expressed by the differential operator B
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so that DIV [σ] = BTσ. In the linear elastic undamped case the stress σ depends linearly
on the strain ε and on the displacements u as follows σ= [D]ε = [D]Bu. Here denotes
[D] the elasticity tensor. The basic equations of mechanics are therefore

BT [D]Bu + fV = ρ
∂2u

∂t2
. (2)

The relation between stress and strain is called the constitutive equation and represents the
starting point of the considerations of damping effects. The models presented further on
are different possibilities to take the damping through different constitutive equations into
account.

2.2 Discretization of the Mechanical Equations with FEM
As the damping models are implemented within the FEM code CFS++ [2] the base of
this method will be sketched in the following. For the reason of simplicity the boundary
conditions of (2) are set to zero. Multiplying (2) by an appropriate test function u′ and
performing a partial integration will transform (2) to its variational formulation, which
reads as follows: Find u ∈ H1

0 such that
∫

Ω

ρu′ · ü dΩ +

∫

Ω

(Bu′)T [D]Bu) dΩ =

∫

Ω

u′ · fV dΩ (3)

for any u′ ∈ H1
0. This form can be decomposed into finite domains, called finite elements

where for each element an element matrix can be created easily. Finally these element
matrices are assembled to global system matrices. This procedure leads to the matrix form
of (3) as

Muü+ Kuu = f , (4)

where Mu and Ku represent the assembled system matrices. The time discretization of
that linear algebraic system of equations is performed by a standard Newmark scheme in
an effective mass formulation [1].

3 Damping Models
Three damping models are discussed within this contribution. These models are the damp-
ing model according to Rayleigh, a rheological based model and a fractional damping



model. Because the frequency range of vocal fold vibrations lies in the range of about
100 Hz to 1 kHz, this frequency scope is treated exclusively. The enquiries done so far
as well as [3] attest the fractional damping model to be the most appropriate method for
human tissue. Therefore the fractional damping is treated more in detail.

3.1 Rayleigh Damping
The idea behind the Rayleigh damping is a weighted addition of the global mass and the
global stiffness matrix in order to obtain a global damping matrix [1]. The scalar weight of
the stiffness matrix is αR and that of the mass matrix is βR.

Cu = αRMu + βRKu (5)

This leads to the following matrix formulation, which is also solved with a Newmark
scheme.

Muü+ Cuu̇+ Kuu = f , (6)

With the Rayleigh model the frequency behavior is however fixed to be ξ = αR+βRω
2

ω .
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Figure 1: Damping ξ from 100 Hz to 1 kHz

Here ω denotes the angular frequency and ξ
the modal damping parameter. For a high fre-
quency the damping is thereby stiffness pro-
portional und for a low frequency it is mass
proportional. If one enforce a damping of
ξ = 10% for 100 Hz and 1 kHz the result-
ing damping inbetween is shown in Fig. 1.
This limits the applicability in time domain
computations. For a frequency domain anal-
ysis different values of αR and βR for differ-
ent frequencies can be realized because the
frequencies are treated separately. Due to ad-
ditional nonlinear effects such as contact of the PE segment one is restricted to a transient
analysis.

3.2 Rheological Based Damping
The rheological based damping model as described by Krings [4] is here chosen to be im-
plemented in CFS++. This model represents an enhancing of 1D rheological models like
the Kelvin body into 3D. We also considered the possibility of different combinations for
the deviatoric (shape changes) and for the hydrostatic (volume changes) part. With a Kelvin
body for both parts the obtained damping matrix Cu is of the same shape as the stiffness
matrix and a linear damping behavior over the frequency domain is obtained. This is the
same behavior as the stiffness proportional part of the Rayleigh model and therefore also
not adequate for vocal fold vibration as already discussed. In the future further combi-
nations of damping models for the deviatoric and the hydrostatic part will be considered
according to their frequency behavior.



3.3 Fractional Damping
The third damping model, which will be discussed, is the fractional damping model. This
model is based on fractional derivatives which are therefore explained in the following.

3.3.1 Fractional Derivative

The fractional derivative according to Grünwald [3] is a generalization of the differentiation
of integer order. Starting from a difference definition of the derivative of order 1, which
reads as

d1f(t)

dt1
= lim

∆t→0

f(t)− f(t−∆t)

∆t
, (7)

(8)

and by using the binomial coefficient we can write the derivative for any integer order n as

dnf(t)

dtn
= lim

∆t→0
(∆t)−n

n∑

j=0

(−1)j
(
n

j

)
f(t− j∆t). (9)

This form is restricted to integer orders n because of the binomial coefficient
(
n
j

)
. With

the Gamma function Γ(q), which is a generalization of the factorial, it is possible to ob-
tain a formulation of this binomial coefficient, which is valid for any real number q. An
abbreviated form can be given with the help of the Grünwald coefficients Aj+1 [3].

(−1)j
(
q

j

)
=

Γ(j − q)
Γ(−q)Γ(j + 1)

= Aj+1 (10)

By inserting (10) into (9) we obtain an expression for the differentiation, which is valid for
any real number q.

dqf(t)

dtq
= lim

N→∞
(
t

N
)−q

N−1∑

j=0

Aj+1f(t− j∆t). (11)

The Grünwald coefficients can be computed recursively in advance of the simulation to get
an efficient implementation [5]

Aj+1 =
j − 1− q

j
Aj . (12)

By considering the application of the fractional derivatives within fractional damping, we
restrict q to positive values. According to (12) the series of the Grünwald coefficientsAj+1

for j → ∞ is strictly decreasing from the point where j > q, because the recursive mul-
tiplication factor is then smaller than 1. Furthermore is the limit of the monotonically de-
creasing Grünwald coefficients for j →∞ zero (limj→∞ |Aj+1| = 0). The fact that values



are weighted less the further they lie in the past is known as fading memory and is consis-
tent with the real material behavior. The fading memory effect motivates an approximative
form of the derivative by cutting the series after Nl coefficients with Nl < N − 1

dqf(t)

dtq
≈ lim

N→∞

(
t

N

)−q Nl∑

j=0

Aj+1f(t− j t
N

) . (13)

3.3.2 Fractional Damping

The concept of fractional derivatives can be used to generalize the rheological models, by
replacing the integer order derivative by fractional order. Instead of springs and dashpots
we consider a fractional element with the constitutive equation σ = βF

dq

dtq ε . Therefore
the behavior of the fractional element is, despite the proportionality factor βF , for q = 1
equivalent to a damper and for q = 0 equivalent to a spring. A common choice for the
fractional derivative grade is a value between 0 and 1 [3]. Then the fractional element
interpolates between the behavior of a spring and a dashpot. The fractional constitutive
equation used in this contribution is a three parameter model

σ+ [αF ](
dq

dtq
σ) = [D]ε + [βF ](

dq

dtq
ε ). (14)

The numerical discretization results in a form similar to (4). Different to the standard
scheme (4) is however the stiffness matrix and the right hand side vector in which the
history values are taken into account.
A 3D cube with edge length a is used in order to test the fractional damping model. The
planes x = 0, y = 0, z = 0 of the cube are set to be fix and at the free corner (a, a, a) a force
of amplitude (f(t), f(t), f(t)) with f(t) like in Fig. 2 is acting so that a three dimensional
stress condition is achieved. After 2/3 of the total computation time the excitation force
gets zero to obtain a free damped vibration.
First of all we will show results of a cube with a = 10 cm and a frequency of 100 Hz
in order to clarify how many history values have to be considered, see Fig. 3. Compared
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Figure 2: Excitation force
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Figure 3: Varying the history values

to the case where all history values are stored (299) the error with 50 history values stays



small. This is valid for the forced vibration phase as much as for the free damped phase. So
further computations were made with 50 history values.
As the fractional parameters of a specific material are in general not available they have to
be identified. Therefore it is important to know what impact parameter variation has onto
the damping behavior. For this reason parameter variations of αF and βF , as shown in
Fig. 4, are made. In general the damping increases with decreasing αF and increasing βF .
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Figure 4: Parameter sensitivity of αF (left) and βF (right)

4 Conclusion
The most appropriate damping model to describe the viscoelasticity of human tissue is
according to this investigation the fractional damping model. As for human tissue the pa-
rameter identification can not be done without measurements, the next step is to build a
measurement setup. Therefore test items will be made to measure transfer functions.
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