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Abstract

The library Parallel Expression Templates for Partial Differential Equations (ParEx-
PDE) is designed to be a convenient and efficient tool for writing numerical solvers for
problems that involve partial differential equations. ParExPDE achieves this goal by
using an advanced C++ programming technique, so-called Expression Templates. This
technique allows to produce highly efficient code when it comes to arithmetic opera-
tions on large matrices and vectors. The high efficiency is obtained by evaluating all
arithmetic expressions at compile time. Furthermore, Expression Templates are very
convenient to use, for a user of the library can stay close to the mathematical language
in the implementation.

The ParExPDE library has been under development for two years and has recently
reached a state that makes the library eligible for the solution of real applications. For
this reason, we investigate in this paper the implementation of numerical solvers for
bioelectric field problems, more precisely the reconstruction of electrical sources within
the human brain from EEG data. A part of the reconstruction, which eventually provides
a solution for this inverse problem, consists of solving several forward problems. We
present some implementation details of a multigrid algorithm for the solution of the
forward problem along with some numerical results.

1 Introduction
The reconstruction of the bioelectric field in the human brain from non-invasive measure-
ments like electroencephalographic recordings (EEG) has the potential to become a pow-
erful tool in neurology ([Sch98]). From a mathematical point of view, the reconstruction
can be considered as an inverse problem, which can be solved by repeated numerical sim-
ulations of the potential distribution, that we call forward problem, for assumed dipolar
current sources in the brain. An accurate reconstruction of the electrical brain activity in-
volves the consideration of a realistic head model, which is ideally obtained from regis-
tered Computer Tomography (CT) and Magnetic Resonance (MR) images. Furthermore,
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with the advent of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), an estima-
tion of the anisotropic conductivities within the brain has been made available, which al-
lows a further, patient specific, refinement of the realistic head model ([Van01],[MV03],
[WKAR02],[Max04],[Moh04]).
The sources to be localised during the inverse problem and to be modeled in the forward
problem are electrolytic currents within the dendrites of the large pyramidal cells of ac-
tivated neurons in the cortex sheet of the human brain. The resulting primary current is
generally formulated as a mathematical dipole

~jp(~x) = ~Mδ(~x− ~x0) (1)

with the moment ~M and the position ~x0.
The total current distribution is modeled as

~j = ~jp + σ ~E , (2)

where σ is a conductivity tensor. The fields are quasistatic and therefore the electric field
~E can be expressed as the negative gradient of a scalar potential u (cf. [Nol96])

~j = ~jp + σ∇u . (3)

Because the divergence of ~j must be zero, we arrive at the quasistatic Maxwell’s equations
of electrodynamics in the domain Ω ⊂ R3 with Neumann boundary conditions

∇ · (σ∇u) = ∇ ·~jp in Ω
σ ∂u

∂~n |Γ = 0 on Γ
. (4)

The direct application of variational and FE techniques to equation (4) yields with meshsize
h, the number of unknowns Nh ∈ O(h−3) as h tends to zero and for an FE-basis Vh =
span{ψi}Nh

i=1 a system of linear equations

Khuh = Jh , (5)

where Kh ∈ RNh×Nh is the stiffness matrix with entries

K
[i,j]
h =

∫
Ω

∇ψjσ∇ψidΩ . (6)

The right hand side Jh ∈ RNh depends on the chosen dipole model and will be discussed
in the following section.

2 Zenger mathematical dipole model
The Zenger mathematical dipole model (ZMD) uses the mathematical dipole (1) and as-
sumes that the dipole is located inside an element and not on its surface. In that case we



can use after multiplication with a test function v and integration over the domain Ω Greens
formula on the right hand side of equation (4)∫

Ω

v∇ ·~jpdΩ =
∫

Γ

v
∂~jp

∂~n
dΓ−

∫
Ω

(∇v)~jpdΩ . (7)

The surface integral vanishes because of the assumption that there is no source current on
the surface of the conductor

∂~jp

∂~n
= 0 on Γ . (8)

After inserting the mathematical dipole (1) and using the above FE-basis Vh we get the
right hand side entries

[Jh]i =
∫

Ω

(∇ψi) ~Mδ(~x− ~x0)dΩ = ~M · ∇ψi(~x0) . (9)

3 Implementation in ParExPDE

3.1 Setup of the conductivity tensor and the differential opera-
tor

Differential operators within ParExPDE ([FP03]) are discretised using Finite Elements with
linear basis functions. Therefore, the conductivity has to be described in terms of its con-
stant values within each element. Within ParExPDE, we have to store the values in a so-
called cell variable.

pxdVariable<double>* sigma = new pxdVariable<double>
( partition.template createCellVariable<double>() );

In case of isotropic conductivity which is constant in the whole domain, we can just assign
the conductivity’s value to the variable.

*sigma = sigma_value;

If the conductivity is not constant, each component of the variable has to be set individu-
ally. For head models based on CT or MR images, each voxel of the image can be mapped
to an element; the corresponding component of the variable is assigned the matching con-
ductivity value.
Once the cell variable is properly initialised, the differential operator representing “∇σ∇”
can be constructed:

pxdVariableDifferentialOperator
<pxdVariableLaplaceOperatorFunction,double> sigma_laplace( sigma );



3.2 Setup of the right-hand side
The dipole is modeled with the Zenger mathematical dipole model as described in section 2.
The computation of the right-hand side uses the COLSAMM library by J. Härdtlein [HP05]
which is also used within ParExPDE for the implementation of differential operators.

3.3 Multigrid solver
Once the operator and the right-hand side are set up, we can apply some standard multigrid
V-cycles to solve the problem. The first step in a single V-cycle is to restrict the problem
down to the coarsest level.

for (int level = 0; level < number_levels-1; level++) {
for (int smooth = 0; smooth < presmooth; smooth++) {
// pre-smoothing with Gauss-Seidel
u = u - (sigma_laplace(u) + f) /

pxdDiag(sigma_laplace) | interior_points;
}

r = f + sigma_laplace(u); // calculate residual
r = 0.0 | boundary_points; // set residual to zero on boundary
r.doRestrict(); // restrict to coarser level

f.levelDown(); // go down one level with right-hand
f = r; // side; initialise with residual
u.levelDown(); // go down one level with solution
u = 0.0; // initialise with zero

}

On the coarsest level the problem can be solved exactly as its size is now usually so small
that the computational effort for a direct solver is feasible. ParExPDE makes use of the
SuperLU DIST library [LD03].
Finally, the solution has to be interpolated up to the finest level.

for (int level = number_levels-2; level >= 0; level--) {
f.levelUp(); // go up one level with right-hand side
r = u; // the residual on the finer level is
r.doProlongate(); // the solution on the coarser level

u.levelUp(); // go up one level with the solution
u = u + r | interior_points; // apply correction

for (int smooth = 0; smooth < postsmooth; smooth++) {
// post-smoothing with Gauss-Seidel
u = u - (sigma_laplace(u) + f) /

pxdDiag(sigma_laplace) | interior_points;
}

}



V-Cycle Residual Convergence rate
0 1.56832 · 10−1

1 1.82064 · 10−3 0.011609
2 7.36400 · 10−5 0.040447
3 4.35923 · 10−6 0.059197
4 2.83094 · 10−7 0.064941
5 1.92223 · 10−8 0.067901
6 1.31355 · 10−9 0.068335
7 8.99673 · 10−11 0.068492
8 6.13385 · 10−12 0.068179
9 4.17525 · 10−13 0.068069
10 2.82517 · 10−14 0.067665

Table 1: Residuals and convergence rates for the model problem with σ0 = 1 and the
dipole placed at ~x0 = (0.507812, 0.507812, 0.507812)T and direction ~M = (1, 1, 1)T ,
discretised on a 643 grid and solved with V(2,1)-cycles.

4 Results

4.1 Model problem

We consider a single dipole with moment ~M placed at the point ~x0 within the unit cube.
The conductivity is isotropic and constant with value σ0. The analytical solution for the
resulting electrical field is

u(~x) = −
~M · (~x− ~x0)

4πσ0|~x− ~x0|3

Table 1 shows numerical results of the implementation.

4.2 Realistic head data
Some qualitative results with realistic head data by courtesy of C. Wolters, University
Münster, can be seen in Figure 1. The data consists of an MR image of the brain which
is segmented into different regions (skin, skull, brain matter etc.). These are mapped to
different conductivity values as described in section 3.1.
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