
AMDiS - Adaptive multidimensional
simulations: Towards component based

adaptive finite element software

Simon Vey
vey@caesar.de

Axel Voigt
voigt@caesar.de

Research Center Caesar, Crystal Growth Group
Ludwig-Erhard-Allee 2, 53175 Bonn

Abstract

In this paper we describe the concepts of our finite element toolbox AMDiS which is a
C++ library written in an object oriented manner. Furthermore we introduce the Shared
Mesh Interface, that enables the distributed management of unstructured meshes and
CaST, which is an approach for component based adaptive simulations.

1 Introduction

In the field of scientific computing continuesly new technologies are developed which en-
ables the user to solve more and more complex problems. On the other hand these increas-
ing possibilities often lead to a more complex software handling, which quickly can neu-
tralize the achieved benefits. Therefore modern simulation software should provide a high
level of abstraction, keeping numerical issues away from the user, without loosing gener-
ality, extensibility, maintainability or efficiency. To reach these often contradicting goals,
well proven design patterns and software techniques are applied to our finite element tool-
box AMDiS. As the name implies, adaptivity and multidimensionality are two of the most
important properties. Other main features of AMDiS are the coupling of different prob-
lems of maybe different dimensions within one simulation code, the solution of systems
of coupled PDEs, the implementation of parametric elements, which allows to compute
on arbitrary manifolds, and the implementation of composite finite elements ([SVV05]),
which can resolve complex domains without the need of an explicit triangulation of these
domains.
In section 2 we describe some implementation aspects of AMDiS, including the adaption
loop as highest abstraction level. To be able to exchange mesh data including the simulation
results with other software tools, we developed theShared Mesh Interface(SMI), which
provides an abstract and application independent interface for unstructured meshes and a
client-server environment which allows to exchange data even between applications run-
ning on different machines. SMI is described in section 3. Finally we describe in section 4
an approach for a component based simulation framework (CaST) supporting adaptivity as
well as dynamic and distributed module instantiation.



Problem
algorithmic classes

data container

dependencies

post−processing

assemble solve estimate

adapt mesh

reached?

tol. [yes]

[no]

define problem

generate mesh

EstimatorSolver

Marker

Refinement Manager

Coarsening Manager

Operator

Boundary Condition

MacroReader

SMIAdapter

Assembler

Quadrature Preconditioner

processingpre−processing

visualization

SMIAdapter

ValueWriter

MacroWriter

MatVecMultiplier

AdaptStationary

AdaptInfo

Figure 1: Adaption loop for a stationary problem and the needed software components

2 AMDiS implementation aspects

AMDiS is written as an object oriented library in the programming language C++. The
main development goals was to implement a software which is able to solve a wide range
of problem classes and on the other hand provides a high level of abstraction, keeping nu-
merical issues away from the user. Furthermore modern simulation techniques should be
usable in a flexible, extensible and efficient way. A modular design using modern program-
ming techniques and well proven object oriented design patterns helps to achieve these
often contradicting goals. In Figure 1 the main AMDiS components with the adaption loop
as highest abstraction level are shown.

2.1 Adaption loop

The adaption loop builds the highest abstraction level in the simulation. Here the decisions
are made, when a problem has to assemble its equation system, when to solve the system,
when to estimate the error indicators and when to adapt the underlying mesh. In order to
keep the implementation of these single steps transparent at adaption loop level, it is dele-
gated to aProblemIterationInterfaceand aProblemTimeInterface. The implementation of
the iteration interface knows what to do for one adapt iteration. In the standard case for
one single problem, the equation system must be assembled and solved, local errors have
to be estimated and the mesh has to be adapted. In the case of several coupled problems
this iteration can become more complex. The time interface is responsible for all aspects
concerning time dependency. The problems are known to the adaption loop only by this
simple interfaces. This allows a very easy and straightforward formulation of the adaption
loop by using the interface instances as black box components, what in turn leads to a high

2



quadrature points

A0
A1
A1
A2
A4
A5

B0
B4
B5
B2
B3
B3

1:
2:
3:
4:
5:
6:

dual traverse

B5

B4

B2

B0

B3
A4

A5
A0

A2

A1

mesh A mesh B

Figure 2: Dual traverse of two independently refined meshes

reusability of the adaption loop for different problem types. Beside the problem the cur-
rent adaption state, which is stored in anAdaptInfoobject, must be known to the adaption
loop. Here informations about the current simulation time, the current timestep size and the
current iteration number are stored and whether the desired tolerances or the maximal iter-
ation numbers are reached. In Algorithm 1 we show an adaption loop of a time dependent
problem solved with an explicit time strategy. Before the time loop starts an initial solution
must be calculated for the start time.

Algorithm 1 Explicit time strategy
adaptInfo→time = adaptInfo→startTime;
timeInterface→solveInitialProblem();
iterationInterface→oneIteration(adaptInfo, ESTIMATE);
while adaptInfo→time< adaptInfo→endTimedo

adaptInfo→time += adaptInfo→timestep;
timeInterface→initTimestep();
timeInterface→setTime(adaptInfo);
iterationInterface→beginIteration(adaptInfo);
iterationInterface→oneIteration(adaptInfo, FULLITERATION);
iterationInterface→endIteration(adaptInfo);
timeInterface→closeTimestep();

end while

Note that no assumptions about the interface implementations are made in the adaption
loop. The calculation of the initial solution is delegated to the time interface, whose imple-
mentation also is transparent for the calling adaption loop.

2.2 Systems of coupled PDEs

In AMDiS it is very easy to solve systems of coupled PDEs in one equation system. To
illustrate this possibility we explain it on the easy example problem

−∆u = f

3



u− v = 0

To define this problem we formulate a matrix of operators for the left hand side and a vector
of operators for the right hand side of the equation system which results in the following
equation system after assemblage:(

L−∆u 0
Lu L−v

) (
uh

vh

)
=

(
fh

0

)
Let n be the dimension of the finite element space ofuh andm that ofvh. ThenL−∆u ∈
Rn×n, L−v ∈ Rm×m, Lu ∈ Rm×n, uh ∈ Rn, vh ∈ Rm andfh ∈ Rn. So we have an
equation system consisting of a matrix of DOF matrices and two vectors of DOF vectors. In
the general case ofl coupled PDEs we have a matrix ofl× l operators where the entry(i, j)
contains the operator which couples thei-th equation of the system with thej-th variable.
If equationi and equationj live on the same finite element space the assemblage can be
done in a standard way. If the mesh is the same but the basis functions differ, the finite ele-
ment space of equationi must be considered asrow spaceand that of equationj ascolumn
spacein the assembling routines. If even different meshes are used for the different compo-
nents, for one elementS of the mesh of componenti all elements of thej-th components
mesh must be considered, that have an overlap with elementS.
Similar to the method described in [Sch03] in AMDiS meshes of different components
share one initial triangulation but can be adapted independently of each other. The assem-
blage then is done within a parallel traverse of the two involved meshes (dual traverse),
where each traverse step returns one element of each mesh. If a leaf element of one mesh
has further refinements in the other mesh, it is returned in several dual traverse steps, until
all corresponding leaf elements of the other mesh was traversed as well. The integration
now is done over the smaller element using a parameterized quadrature for the basis func-
tions of the bigger one. Figure 2 shows an example of a dual traverse for two triangular
meshes.
The solution of the resulting equation system, error estimation and element marking can be
deduced from the scalar case in a general way.

3 Shared Mesh Interface (SMI)

The goal of SMI is to provide an unified and distributed management for arbitrary meshes.
It is not part of AMDiS but can be used by any set of applications which want to share one
or more meshes. In AMDiS SMI is used to couple the simulation with a specialized visu-
alization software in the post-processing step and to allow the integration of external mesh
generators in the pre-processing step. Furthermore SMI can be used to turn the hierarchical
mesh structure of AMDiS into a flat representation of the mesh, which allows a flexible
iteration over elements and nodes, what is useful for some algorithms.
On the one hand SMI provides an abstract interface which can handle with any kind of un-
structured meshes consisting of arbitrary and even mixed element types, on the other hand
the client-server architecture of SMI allows to share meshes between different application
running at even different computers.

4



4 Component based adaptive simulation

Numerical simulation software naturally decomposes into several building blocks. In the
pre-processing step the problem domain must be defined, a discretization of this domain
must be created, and problem operators and functions must be given. In the post-processing
step the simulation result may be given to a visualization software or other post-processing
tools. The processing step in the adaptive case typically consists from the assemblage of a
equation system, the solution of this system, a global and local error estimation and a mesh
adaption based on the local estimates.
The goal of a component based simulation approach is to define uniform interfaces for each
of these tasks and to provide a framework which allows an easy and flexible interchange of
the single modules.
ORCAN (Open Reflective Component Architecture, [ORC]) is such a framework includ-
ing its own component management which allows component instantiation dynamically at
runtime. Each interface method invocation is done by a virtual function call which causes
a certain time overhead. This is unproblematic if such interface calls are done at a high
abstraction level outside the inner simulation loops. But adaptive mesh refinement, which
is not supported by the ORCAN interfaces, needs such an inner loop interface.
DUNE (Distributed and Unified Numerics Environment, [BDE+05]) focuses on interfaces
of fine granularity supporting adaptivity. One of the main aspects is the unified access of
hierarchical meshes. Here the interfaces are realized by static polymorphism using the tem-
plate mechanisms of C++. The main drawback of this approach is the fact, that all needed
modules have to be linked together in one user application, so no dynamic component ex-
change is possible. Every time a new module should be included, the source code of this
module has to be compiled together with all other modules of the application.
So our approach is the attempt to combine the two ideas of ORCAN and DUNE using
the CORBA component model (CCM [CCM02]) as component management, which is a
widespread platform and language independent standard supporting even distributed com-
ponents. To avoid slow mesh accesses in inner computation loops, local mesh representa-
tions are stored where necessary. The local mesh access then is done through a DUNE like
template based interface. Using this interface the components also can be statically linked
together, if no component management is needed. To avoid a complete mesh transfer after
each mesh change, SMI is used as shared mesh management. So only local mesh changes
must be communicated, which drastically reduces the needed communication overhead.
So far CaST (Component based Adaptive Simulation Technology) is just a coarse concept
which is illustrated in Figure 3.

5 Conclusion

In materials science as well as in other areas different problems occur with different require-
ments to the simulation software. On the other hand from an abstract point of view often
the same building blocks are needed to implement the application. Therfore the strict sepa-
ration of abstraction levels in AMDiS helps to produce reusable and maintainable code. In

5



component 1

local mesh

component 2

component 1

component 2

ORB

local mesh

application

CaST middleware

DUNE−IF DUNE−IF

CaST over CORBA/CCM statically linked CaST components

mesh

application

SMI−client SMI−clientSMI−server DUNE−IF

DUNE−IF

CaST−IF CaST−IF

CaST−IF

CaST−IF

Figure 3: CaST components used with and without the CaST middleware

the future component based frameworks including unified module interfaces can improve
the productivity of simulation software development drastically. With CaST we introduced
a concept for such a framework supporting adaptivity as well as dynamic and distributed
module access.

References

[BDE+05] P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger,
and M. Rumpf. Towards a unified framework for scientific computing. In
R. Kornhuber, R.H.W. Hoppe, D.E. Keyes, J. Periaux, O. Pironneau, and J. Xu,
editors,Proceedings of the 15th Conference on Domain Decomposition Meth-
ods, LNCSE. Springer-Verlag, 2005. accepted for publication.

[CCM02] Corba component model. Technical report, Object Management Group,
http://www.omg.org/technology/documents/formal/components.htm, 2002.

[ORC] Orcan - open reflective component architecture,
http://www.cgl-erlangen.com.

[Sch03] A. Schmidt. A multi-mesh finite element method for phase-field simulations.
volume 32 ofLNCSE, pages 209–217, 2003.

[SVV05] C. Sẗocker, S. Vey, and A. Voigt. AMDiS-adaptive multidimensional simula-
tion: composite finite elements and signed distance functions.WSEAS Trans.
Circ. Syst., 4:111–116, 2005.

6


