

TEAMWORK APPROACH FOR MODELING AND SIMULATION
OF DDOS ATTACKS IN INTERNET

Igor Kotenko

Alexander Ulanov
St. Petersburg Institute for Informatics and Automation

39, 14th Liniya, St. Petersburg, 199178, Russia
{ivkote, ulanov}@iias.spb.su

KEYWORDS
Multi-agent systems, Agent-based Modeling and Simulation,
Distributed Denial of Service (DDoS) Attacks, Network
Security.

ABSTRACT

The paper considers an approach to modeling and simulation
of Distributed Denial of Service (DDoS) attacks fulfilled by
a group of malefactors. The approach is based on
combination of “joint intentions” and “common plans”
theories as well as state machines. The formal framework for
modeling and simulation of DDoS) attacks is presented. The
architecture and user interfaces of the Attack Simulator
software prototype implemented and its evaluation results
are depicted. The simulation-based exploration of the Attack
Simulator prototype demonstrated its efficacy for
accomplishing various DDoS attack scenarios. The
framework and software prototype developed can be used
for conducting experiments for evaluating computer network
security and analyzing efficiency of security policy.

1. INTRODUCTION

Vulnerabilities of computer systems, permanently
magnifying complexity of cyber-attacks and gravity of their
consequences highlight urgent necessity for new approaches
to information assurance and survivability of computer
systems. One of the most harmful classes of attacks aiming
at destruction of network resources availability is “Denial of
Service” (DoS) (Mirkovic et al. 2002; Mirkovic et al. 2004).
The purpose of DoS is isolation of a victim host. As a result
of this attack the legitimate users can not access necessary
network resources. Most of operating systems (OS), routers
and network components are prone to DoS attacks that are
hard to prevent.
The new type of attack arrived in the beginning thic century.
It is called “Destributed Denial Of Service” (DDoS). To
perform DDoS attacks malefactor needs to hack a set of
computers (“zombies”) at first and to run on them DoS
programs to attack next targets. This makes hard to detect
DDoS attack and to defense from it. The DDoS domain is
becoming more and more complex. We observe now the
great variety of different DDoS attacks and the continuous
appearance of new types that break the defense.
The seriousness of the DDoS problem and the increased
frequency of DDoS attacks have led to the development of
numerous DDoS defensive mechanisms. Unfortunately, the
existing theoretical basis that should support implementation

of defensive mechanisms against such class of attacks is
poor.
According to our opinion, among many reasons, the above is
stipulated by weakness of fundamental research that
consider defense against DDoS attacks as a task of
adversarial competition between security systems and
malefactors’ attacking systems, in particular, the research
intending development of an adequate formal framework for
exploratory modeling and respective software architecture
for simulation of DDoS attacks and distributed defensive
software components of computer network (Kotenko et al.
2003).
Modeling and simulation of DDoS attacks and performing
their analysis are very important for discovering computer
systems prone to DDoS, formulating defense
recommendations and developing effective protective
methods.
The paper considers an approach to agent-based modeling
and simulation of DDoS attacks fulfilled by a group of
malefactors. The goals of the paper are development of
agent-based formal framework for specification of DDoS
attacks and implementation of a software tool making it
possible to simulate DDoS attacks.
The rest of the paper is structured as follows. Section 2
outlines suggested common approach for modeling and
simulation of DDoS attacks by imitating malefactors’
teamwork. Section 3 describes the ontology of DDoS attacks
and specifications of structure and common scheme of
operation of agents. Section 4 determines architecture and
main user interfaces of the DDoS Attack simulator
elaborated and its evaluation issues. Conclusion outlines the
results of the paper.

2. DDOS COMPONENTS AS INTELLIGENT
AGENTS. TEAMWORK-BASED FRAMEWORKS
FOR MODELING AND SIMULATION OF ATTACKS

By the analysis of present DDoS attacks it is possible to
reveal the division of DDoS software components by their
roles. At first, there is a “master” program which gathers the
initial information about hosts in the Internet and obtains the
access to their resources for starting “daemons” programs.
“Daemons” are the attack executors. They usually provide a
full access to compromised host for “master”. “Master”
coordinates “daemons” actions: it can exchange messages
with “daemons” and install on captured hosts new programs
for further “daemons” propagation. “Daemon” reports to
“master” about its state. As soon as the DDoS net obtains
required size, “master” sends the messages about attack time

and attack target (or simply an attack signal) to all
“daemons”.
From analysis of DDoS attacks we can see that each
attacker-program (“master” or “daemon”) is an autonomous
software component which has initial knowledge, can get
and process data from environment, has target and list of
activities to reach this target, and can interact with other
components. These properties are peculiar to intelligent
agents. All DDoS components form a team of agents as they
fulfill joint operations for reaching the common long-time
goal (Denial of service attack) in a dynamic external
environment (the Internet) at presence of noise and
counteraction of opponents (components of security
systems).
Now the research on teamwork is an area of steadfast
attention in multi-agent systems (Fan and Yen 2004). A set of
approaches to formalization and simulation of the agents’
teamwork is known. For the organization of teamwork of
DDoS agents, we have used the base ideas stated in works
on the joint intention theory, the shared plans theory and the
combined theories of agents’ teamwork.
In the joint intentions theory (Cohen and Levesque 1991) the
worlds, in which the agents act, are assumed to consist of
primitive events that can be associated with specific agent.
Statements in which the agent is convinced are called its
beliefs. States of agent that are considered by it as the most
desirable are called its goals. The mutual agents’ beliefs are
formed from beliefs of agent group. Agent team is said to
have the joint intention to complete an action if and only if
all team members have joint persistent goal to complete this
action.
In the shared plans theory (Grosz and Kraus 1996) the
shared plan is believed to be the plan of joint fulfillment of
some set of actions by the group of agents. The main
features of shared plan are as follows: (1) the group plan
demands the group (team) of agents should reach the consent
to fulfill the instructions, to which they will follow in group
operations; (2) the agents should take up the obligations not
only on the personal operations, but also on operations of the
group as a whole (personal intentions how to make
operations); (3) each agent should take up the obligations on
operations of other agents (approved intention); (4) the plan
of the group activity can have as components the plans of the
separate agents for the assigned operations, as well as plans
of subgroups.
In the combined theories (Jennings, N. 1995; Tambe 1997;
Tambe and Pynadath 2001) the notion of joint persistent
goal is used for building the scheme of agents’ actions
coordination and agents’ communication protocols. The
notion of shared commitments is the basis for
implementation and monitoring of team activity. This notion
is used while checking the state of goal and corresponding
conditions (the goal is achieved, not achieved, cannot be
achieved or irrelevant in view of breaking conditions). The
notion of joint intentions is used to describe the agents’ team
activity in terms of particular operators. The main goal in
teamwork is to provide the activity of agents according to a
high-level scenario where each agent knows its place. The
shared plans theory supports required methods for solving
this problem in form of shared plan (full or partial). This
plan can specify the activity of whole team, agents’ groups
and particular agents and also the constraints determining

agents’ collaboration and communication. The joint
intentions theory is used for structuring of shared plan,
scenario of its execution and communication.
Considering the “master” and “daemons” specifics the most
suitable approach to use is the combined theory. There must
be a shared plan, because of need to provide agents work
according to mentioned DDoS attack steps. Agents have a
joint goal – to perform DDoS attack. However, “master” and
“daemons” act each in one's own way. Individual actions
and communications of agents will also be a part of shared
plan.
The common (group, individual) intention and commitment
are associated with each node of a general hierarchical plan.
These intention and commitment manage execution of a
general plan, providing necessary flexibility. During
functioning each agent should possess the group beliefs
concerning other team-mates. For achievement of the
common beliefs at formation and disbandment of the
common intentions agents should communicate. All agents’
communications are managed by means of common
commitments built in the common intentions. Besides it is
supposed, that agents communicate only when there can be
an inconsistency of their actions. It is important for reaction
to unexpected changes of environment, maintenance of
redistribution of roles of the agents failed or unable to
execute some part of a general plan, and also at occurrence
not planned actions (Tambe 1997).
The suggested technology for creation of the malefactors-
agents’ team (that is fair for other subject domains) consists
in realization of the following chain of stages (Kotenko et al.
2003): (1) formation of the subject domain ontology; (2)
determination of the agents’ team structure; (3) definition of
agent interaction-and-coordination mechanisms (including
roles and scenarios of an agents’ roles exchange); (4)
specifications of the agents’ actions plans (generation of
attacks); (5) assignment of roles and allocation of plans
between the agents; (6) state-machine based realization of
the teamwork.
Formation of the subject domain ontology is an initial stage
of the agents’ team creation. Modeling in any subject
domain assumes development of its conceptual model, i.e.
set of basic concepts of a subject domain, relations between
the concepts, and also data and algorithms interpreting these
concepts and relations.
The agents’ team structure is described in terms of a
hierarchy of group and individual roles. Leaves of the
hierarchy correspond to roles of individual agents, but
intermediate nodes - to group roles.
The plan hierarchy specification is carried out for each role.
For group plans it is necessary to express joint activity
obviously. The following elements are described for each
plan: (a) entry conditions when the plan is offered for
execution; (b) conditions at which the plan stops to be
executed (the plan is executed, impracticable or irrelevant on
conditions); (c) actions which are carried out at a team level
as a part of a common plan.
The assignment of roles and allocation of plans between the
agents is carried out in two stages: at first the plan is
distributed in terms of roles, and then the agent is put in
correspondence to each role. One agent can execute a set of
roles. Agents can exchange roles in dynamics of the plan
execution. Requirements to each role are formulated as

union of requirements to those parts of the plan which are
put in correspondence to the role. There are also group and
individual roles. Leaves correspond to individual roles.
Agents’ functionalities are generated automatically
according to the roles.
For setting the agents’ team operation in real-time a
hierarchy of state machines is used. The state machines
realize a choice of the plan which will be executed and a
fulfillment of the established sub-plans in a cycle “agents’
actions - responses of environment”.
At joint performance of the scenario agents’ coordination is
carried out by message exchange. As the agents’ team
function in antagonistic environment agents can fail.
Restoration of lost functionalities is carried out by means of
redistribution of roles of the failed agent between other
agents and cloning of new agents.

3. ONTOLOGY OF DDOS ATTACKS. STRUCTURE
AND OPERATION OF AGENTS

The developed common ontology of DDoS attacks
comprises a hierarchy of notions specifying activities of
team of malefactors directed to implementation of attacks in
different layers of detail. In this ontology, the hierarchy of
nodes representing notions splits into two subsets according
to the macro- and micro-layers of the domain specifications.
All nodes of the ontology of DDoS attacks on the macro-
and micro-levels of specification are divided into the
intermediate and terminal (Kotenko and Man’kov 2003).
The notions of the ontology of an upper layer can be
interconnected with the corresponding notions of the lower
layer through one of three kinds of relationships: “Part of”
that is decomposition relationship (“Whole”–”Part”); “Kind
of” that is specialization relationship (“Notion”–”Particular
kind of notion”); and “Seq of“ that is relationship specifying
sequence of operation (“Whole operation” – ”Sub-
operation”).
High-layer notions corresponding to the intentions form the
upper layers of the ontology. They are interconnected by the
“Part of” relationship. Attack actions realizing malefactor's
intentions (they presented at the lower layers as compared
with the intentions) are interconnected with the intentions by
“Kind of” or “Seq of“ relationship.
The “terminal” notions of the macro-level are further
elaborated on the micro-level of attack specification, and
on this level they belong to the set of top-level notions
detailed through the use of the three relationships
introduced above.
In micro specifications of the computer network attacks
ontology, besides the three relations described (“Part
of”, “Kind of”, “Seq of”), the relationship “Example of”
is also used. It serves to establish the “type of object–
specific sample of object” relationship.
The developed ontology includes the detailed
description of the DDoS domain in which the notions of
the bottom layer (“terminals”) are specified in terms of
network packets, OS calls, and audit data.
Nodes specifying a set of software exploits for
generation of DDoS attacks (Trinity V3, MSTREAM,
SHAFT, TFN2K, Stacheldraht, Trin00) make up a top
level of the ontology fragment. At lower levels different

classes of DoS-attacks are detailed, for example: “Ack
flood” (sending a huge number of network packets with Ack
parameter), “Land” attacks (sending an IP-packet with equal
fields of port and address of the sender and the receiver, i.e.
Source Address = Destination Address, Source Port Number
= Destination Port Number), “Smurf” (sending broadcasting
ICMP ЕСНО inquiries on behalf of a victim host, therefore
hosts accepted such broadcasting packages answer to the
victim host, that results in essential capacity reduction of a
communication channel or in full isolation of an attacked
network), etc.
DDoS-attack includes three stages: (1) preliminary, (2) basic
and (3) final.
Main operations of the preliminary stage are investigation
(reconnaissance) and installation of agents-“zombies”.
The content of the basic stage is realization of DDoS attack
by joint actions of agents “master” and “daemons”.
Common formal plan of attacks implemented by team of
malefactors-agents has three-level structure:
(1) Upper level is a level of intention-based scenarios of
malefactors’ team specified in terms of sequences of
intentions and negotiation acts;
(2) Middle level is a level of intention-based scenarios of
each malefactor specified in terms of ordered sequences of
sub-goals;
(3) Lower level is a level of malefactor’s intention
realization specified in terms of sequences of low-level
actions (commands).
Algorithmic interpretation of the attack plan specified as a
family of state machines. The basic elements of each state
machine are states, transition arcs, and explanatory texts for
each transition.
States of each state machine are divided into three types:
first (initial), intermediate, and final (marker is End). The
initial and intermediate states are the following:
(1) non-terminal, those that initiate the work of the
corresponding nested state machines;
(2) terminal, those that interact with the host model;
(3) abstract (auxiliary) states.
Example of one of realizations of the state machine DS is
represented in Figure 1. Main parameters of this realization
of the state machine are defined in Table 1.

Figure 1: Diagram of State Machine DS (DoS attack)

DS

End

SF LA PF SA PD UF IFS

DS1

1) DS -> SF DS1 (7-12)

2) DS -> LA DS1 (7-12)

3) DS -> PF DS1 (7-12)

4) DS -> SA DS1 (7-12) 5) DS -> PD DS1 (7-12)

6) DS -> UF DS1 (7-12)

7) DS -> IFS DS1 (7-12)

8) DS1 -> End (7-12)

9) DS1 -> End (7-12)

10) DS1 -> End (7-12) 11) DS1 -> End (7-12)

12) DS1 -> End (7-12)

13) DS1 -> End (7-12)

14) DS1 -> End (7-12)

Table 1: Main Parameters of State Machine DS

State machine name DS
States DS1, SF (SYN flood), LA (Land attack),

PF (Ping flooding), SA (Smurf), PD (Ping
of Death), UF (UDP flooding), IFS
(Storm of inquiries to FTP-server), End

First State DS1
Nonterminal states -
Terminal states SF, LA, PF, SA, PD, UF, IFS
Auxiliary states DS1

We limit a team of agents by two-level structure. The team
of agents consists of “master” and “daemons”. Each master
manages a group of “demons”. “Demons” execute
immediate attack actions against victim hosts.
The attack development depends on the malefactor's “skill”,
information regarding network characteristics, which he/she
possesses, some other malefactor's attributes. An attack is
being developed as interactive process, in which the network
is reacting on an attack action. Computer network plays the
role of the environment for DDoS agents, and therefore its
model must be a part of the attack simulation tool.
So there appears need in one more agent – agent-
“simulator”. It simulates an attack environment – Internet.
The Internet is considered as a set of connected hosts. Every
host has certain characteristics, for example, ip-address and
ties between hosts. All DDoS agent requests to outer world
are coordinated by “simulator”.
Each agent is represented as follows: aN = <K, B, R, P, G,
C>, where N – agent identifier; K – agent knowledge; B –
agent beliefs; R – agent intentions; P – a set of parameters
determining the agent activity; G = { LR, fR } – a set of goals
and actions, LR – hierarchy of possible goals and actions
(reactions to influences), fR – of choosing the goal or action
from LR according current sets K, B, R, P and C; C –
commitments to other agents.
The knowledge (K) of the agent-“simulator” is the
information about hosts (active or not; ip-address; e-mails
list; list of open ports; OS type; ip-address of router for this
host; installed e-mail client, etc.) stored in the notion
“poHosts” and the information about network topology (as a
table of links) represented in the notion “poIP_Links”
(Figure 2).

Figure 2: Fragment of Agent “Simulator” Ontology

The agent-“simulator” beliefs (B) represent the information
about agent deployed on the current host. It is stored in the
notion “poHosts” (agent name).
The “simulator” parameters are the network topology and its
hosts properties.
The agent set of goals and activities (L) consists of responses
to other agents requests (they function according to
protocols). The requests are: request for determining if the
host active is (ActiveHostQuery); request for scanning the
hosts ports (OpenPortQuery); request for host capturing
(HostCapturing); DoS attack execution (DosExecution).
The commitments (C) to other agents are specified and
fulfilled according to the protocols of interaction between
the agents with defined roles (Figure 3).

Figure 3: Agents, Their Roles and Protocols

The knowledge (K) of the agents “master” and “daemon”
consists of information about compromised hosts and itself
(one instance of the notion “poHost” and one
“poAgentProps”) (Figure 4).

Figure 4: Fragment of Agent “Master” (“Daemon”)
Ontology

The agents “master” and “daemon” beliefs (B) are the
information about environment (network topology, hosts
parameters) and about other agents activity. They use the
notions “poHosts” (“agent” attribute) and “poAgentProps”
(host ip-address; ip-address range to scan; workable or not;
victims ip-address; time to start attack). While acquiring new
beliefs these agents build “the map of the world” step by
step.

The agents parameters (P) are their
activation parameters stored in the notion
“AgentProps”.
If the range of ip-addresses to scan is empty
then the agent plays the “daemon” role. It
executes the attack only. If the range is not
null then the agent plays the “masters” role.
It gathers the information about hosts from
mentioned range, tries to capture them and
also executes the attack.
The set of goals and activities (G) and their
hierarchy (L) are represented by state
machine representation (Figure 5).
Main goals and activities of “master” are as
follows: Starting on accessible host
(“DaemonActivation”); Gathering
information about other hosts
(“InformationGathering”), including Host
activity determination (“GetActiveInfo”)
and Open ports determination
(“GetOpenPortInfo”); Propagation by host
capturing (“HostCapturing”), including
Acquiring the hosts resources using the “shared resources”
vulnerability (“Shared_Resources”); DoS attack execution
(“AttackExecution”), for example using “Ping Of Death”,
“Syn overflow”, “Smurf”, etc. Main goals and activities of
“daemon” are starting on accessible host and DoS attack
execution.
The commitments (C) to other agents are specified and
fulfilled according to the protocols of interaction between
the agents with defined roles.

4. ATTACK SIMULATOR PROTOTYPE AND ITS
EVALUATION

The software prototype of Attack Simulator has been
implemented. Now it is used for validation of the accepted
basic ideas, formal framework and implementation issues.
The developed architecture of the attack simulator
implementing the above described attack model was built as
an agent of multi-agent system (MAS). The design and
implementation of the attack simulator is being carried out
on the basis of MAS DK – Multi-Agent System
Development Kit (Gorodetski et al. 2002).
The MAS agents generated by MASDK have the same state-
machine based architecture. Differences are reflected in the
content of particular agents data and knowledge bases. Each
agent interacts with other agents, environment which is
perceived, and, possibly, modified by agents, and user
communicating with agents through his interface.
The main objective of the experiments with the Attack
Simulator prototype is to evaluate the tool’s efficiency for
different variants of attacks and attacked network
configurations. These experiments were carried out for
various parameters of the attack task specification and an
attacked computer network configuration. The influence of
the following input parameters on attacks efficacy was
explored: a malefactor’s intention, a degree of protection
afforded by the network and personal firewall, a degree of
security of attacked host, and the degree of malefactor’s
knowledge about a network. To investigate the Attack

Simulator capabilities, the following parameters of attack
realization outcome have been selected: number of terminal-
level attack actions, percentage of the malefactor’s intentions
that are successful, percentage of “effective” network
responses on attack actions, percentage of attack actions
blockage by firewall, and percentage of “ineffective” results
of attack actions.
Let us consider a small example of simulation of DDoS
attacks. The network fragment including 7 hosts defined as
the environment for DDoS is represented in Figure 6 and
Table 2.

Figure 6: Graphic user interface for DDoS simulation

Table 2: Initial conditions for simulation

№ IP

address
Router
IP-
address

Active Open
ports

OS
type

Agent

1 1 3 yes 80 Win master
2 2 3 yes 80,139 Win -
3 3 - yes 80 Win -
4 4 - yes 80,139 Win -
5 5 4 yes 80 Win -
6 6 4 yes 139 Win -
7 7 4 yes 80 Win -

Figure 5: Fragment of “Master” (“Daemon”) Goals and Activities

Agent “master” was deployed in the initial moment on the
host 1. Its parameters (P) were as follows: target of attack –
host #7; hosts to compromise – 2-6; time to attack – 30
seconds after the start of simulation. Based on this data it
was necessary to create one instance of “simulator”, one
instance of “master” and six instances of “daemons”.
Every agent logs its actions to the text file to trace the DDoS
simulation. A part of DoS agent log is determined below:

18:01:57:0492 DDoS_Agent Master - Info gathering
18:01:57:0507 DDoS_Agent Master - SendMsg Ping (Active Query) ip=6
18:01:57:0585 DDoS_Agent Master - ReceiveMsg Re_Ping (Active
Query Reply) ip=6, active=1
18:01:57:0601 DDoS_Agent Master - SendMsg PortScan (Open Ports
Query) ip=6
18:01:57:0679 DDoS_Agent Master - ReceiveMsg Re_IsPortOpen (Open
Ports Query Reply) ip=6, open ports: 139
18:01:57:0710 DDoS_Agent Master - Capturing
18:01:57:0742 DDoS_Agent Master - Capturing: Shared Resources ip = 6
18:01:57:0851 DDoS_Agent Daemon4 - ReceiveMsg ActivateIt
(Activation) ip=6 time_dos=1101135734.000000
18:02:14:0448 DDoS_Agent Daemon2 - Attack Execution method= Ping
Of Death
18:02:14:0448 DDoS_Agent Daemon3 - Attack Execution method= Smurf
18:02:14:0448 DDoS_Agent Daemon4 - Attack Execution method= Syn
overflow

In the initial moment (18:01:44) the “simulator” (see data
from Table 2) and “master” (see (P) above) were initialized.
Then “master” began to gather information. It try to find if
the given hosts active and if they have the open ports. He
tried to capture these hosts and to deploy “daemons” on
them. They have waited until given time for attack
execution. As a result, “master” could capture the hosts with
ip-address 2, 4, 6 because they were active and had open
port #139. So, only 4 agents (3 “daemons” and “master”)
could start the attack on victim host (ip-address 7). The
agents chose DDoS method and attacked the host #7.
The simulation-based exploration of the developed Attack
Simulator prototype has demonstrated its efficacy for
accomplishing various attack scenarios against networks
with different structures and security policies implemented.

5. CONCLUSION

In the paper we developed basic ideas of the modeling and
simulation of DDoS attacks by teamwork approach. We
presented the structure of a team of agents, agent interaction-
and-coordination mechanisms, and specifications of
hierarchies of agent plans. The technology for creation of the
DDoS agents’ team was suggested and described. We
developed the approach to be used for conducting
experiments to both evaluate computer network security and
analyze the efficiency and effectiveness of security policy
against DDoS attacks. Software prototype of Attack
Simulator was developed. The attack simulator allows
imitating a wide spectrum of real life DDoS attacks. Its
software code is written in terms of Visual C++ and
MASDK. Experiments with the Attack Simulator have been
conducted, including the investigation of attack scenarios
against networks with different security policies.
The further development of the Attack Simulator tool will
consist of enlargement of its capabilities in specification of
the attack tasks, expansion of the DDoS attack classes,
implementing more sophisticated attack scenarios, etc.

11. ACKNOWLEDGEMENT

This research is being supported by grants 04-01-00167 of
Russian Foundation of Basic Research and by the EC as part
of the POSITIF project (contract IST-2002-002314).

REFERENCES

Cohen, P.R. and H.J. Levesque. 1991. “Teamwork”. Nous, 25(4).
Fan, X. and J.Yen. 2004. “Modeling and Simulating Human

Teamwork Behaviors Using Intelligent Agents”. Journal of
Physics of Life Reviews, Vol. 1, No. 3.

Gorodetski, V.; O. Karsayev; I. Kotenko; A. Khabalov. 2002.
“Software Development Kit for Multi-agent Systems Design
and Implementation”. Lecture Notes in Artificial Intelligence,
Vol. 2296.

Grosz, B. and S. Kraus. 1996. “Collaborative plans for complex
group actions”, Artificial Intelligence, Vol.86.

Jennings, N. 1995. “Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions”. Artificial
Intelligence, No.75.

Kotenko, I.; A. Alexeev; E. Man’kov. 2003. “Formal Framework
for Modeling and Simulation of DDoS Attacks Based on
Teamwork of Hackers-Agents”. IEEE/WIC International
Conference on Intelligent Agent Technology. Halifax, Canada,
Proceedings. IEEE Computer Society.

Kotenko, I. and E. Man’kov. 2003. “Agent-Based Modeling and
Simulation of Computer Network Attacks”. Fourth
International Workshop “Agent-Based Simulation 4 (ABS 4)”.
Proceedings. Montpellier. France.

Mirkovic, J.; J. Martin; P. Reiher. 2002. “A Taxonomy of DDoS
Attacks and DDoS Defense Mechanisms”. Technical report
#020018. University of California, Los Angeles.

Mirkovic, J.; S.Dietrich; D.Dittrich; P.Reiher. 2004. “Internet
Denial of Service: Attack and Defense Mechanisms”. Prentice
Hall PTR.

Tambe, M. 1997. “Towards Flexible Teamwork”. Journal of
Artificial Intelligence Research, No.7.

Tambe, M. and D.V. Pynadath. 2001. “Towards Heterogeneous
Agent Teams”. Lecture Notes in Artificial Intelligence,
Vol.2086.

BIOGRAPHY

IGOR KOTENKO graduated with honors
from St.Petersburg Academy of Space
Engineering and St.Petersburg Signal
Academy. He obtained the Ph.D. degree in
1990 and the National degree of Doctor of
Engineering Science in 1999. He is Professor

of computer science and Leading researcher of St.
Petersburg Institute for Informatics and Automation. His e-
mail address is ivkote@spiiras.nw.ru and his Web-page can
be found at http://space.iias.spb.su/ai/kotenko/ .

ALEXANDER ULANOV graduated from
St. Petersburg State Politechnical University
(2004), received his master's degree (2004) in
the area "System analysis and control". He is
now PhD student in the field of agent-based
modeling and simulation for computer

network attacks. His e-mail address is ulanov@iias.spb.su
and his Web-page can be found at
http://space.iias.spb.su/ai/ulanov/ .

