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1. INTRODUCTION

Consider the following parametric bilinear system{
ẋ(t) = A(p)x(t) + N(p)x(t)u(t) + b(p)u(t),

y(t) = c>(p)x(t),
(1)

where x(t) ∈ Rn, y(t) ∈ R, and u(t) ∈ R denote the states,
output, and input, respectively. We assume that the
parameter p is a scalar, i.e., p ∈ R. We want to find a lower
dimensional parametric bilinear system whose output is a
good approximation to the output of the full order system
for a wide variety of inputs u(t) and parameter values p.
We do so by means of a Petrov-Galerkin projection, i.e.,
given the reduction bases V ∈ Rn×r and W ∈ Rn×r with
W>V = Ir where r � n. The reduced model has the
same structure as in (1) with reduced matrices given by:

Ã(p) = W>A(p)V ∈ Rr×r, b̃(p) = W>b(p) ∈ Rr×1

Ñ(p) = W>N(p)V ∈ Rr×r, c̃(p) = V>c(p) ∈ Rr×1.
(2)

For the recomputations of the reduced model to be
efficient, we assume an affine structure on the matrices
in (1) with respect to the parameter. For example, A(p)
is assumed to have the form

A(p) = A0 +
∑̀
i=1

fi(p)Ai, (3)

where Ai ∈ Rn×n are constant matrices and fi(p) are
scalar nonlinearities, for i = 1, . . . , `. We will focus on
building V and W so that interpolation of the two first
transfer functions of (1) is guaranteed. Thus the goal is
to extend the interpolatory parametric model reduction
results of Baur et al. [2011] to the subsystem bilinear inter-
polation framework of Breiten&Damm [2010]. For more
details on parametric and nonparametric model redution
see Benner et al. [2015], Antoulas [2005], Antoulas et al.
[2001], Baur et al. [2014], Benner et al. [2017], Benner
et al. [2017], Hesthaven et al. [2016], Quarteroni et al.
[2016], Benner and Breiten [2012], Flagg and Gugercin
[2015], and references therein.

The two leading subsystem transfer functions of the
bilinear system (1) are given by
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H1(s; p) = c>(p)K(s; p)b(p), and

H2(s1, s2; p) = c>(p)K(s2; p)N(p)K(s1; p)b(p)
(4)

where
K(s; p) = (sIn −A(p))−1. (5)

The subsystem transfer functions of the reduced bilinear

system are defined similarly and denoted by H̃1 and H̃2.

2. MAIN RESULTS

We now list the main results that show how to construct
V and W for desired interpolation conditions:

Theorem 1. Let {σ1, σ2} ⊂ C and p̂ ∈ R such that
K(σi; p̂) exists for all i ∈ {1, 2}. Define

v1 = K(σ1; p̂)b(p̂), v2 = K(σ2; p̂)N(p̂)v1,

w1 = K(σ2; p̂)>c(p̂), w2 = K(σ1; p̂)>N(p̂)>w1.
(6)

If
{v1,v2} ⊆ RanV, (7)

then
H1(σ1; p̂) = H̃1(σ1; p̂),

H2(σ1, σ2; p̂) = H̃2(σ1, σ2; p̂).
(8)

If
{w1,w2} ⊆ RanW (9)

then
H1(σ2; p̂) = H̃1(σ2; p̂),

H2(σ1, σ2; p̂) = H̃2(σ1, σ2; p̂).
(10)

Theorem 2. Assume the conditions in Theorem 1. If both
(7) and (9) hold, then not only do we have interpolation
of the transfer functions

H1(σ1; p̂) = H̃1(σ1; p̂),

H2(σ1, σ2; p̂) = H̃2(σ1, σ2; p̂),
(11)

but also of their sensitivities, i.e.,

∂

∂s
H1(σ1; p̂) =

∂

∂s
H̃1(σ1; p̂),

∂

∂si
H2(σ1, σ2; p̂) =

∂

∂si
H̃2(σ1, σ2; p̂),

∂

∂p
H1(σ1; p̂) =

∂

∂p
H̃1(σ1; p̂),

∂

∂p
H2(σ1, σ2; p̂) =

∂

∂p
H̃2(σ1, σ2; p̂).

(12)

Remark. Interpolation of higher order derivatives can
be attained by including derivative information in the
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reduction bases. We skip these details together with the
proofs of above theorem for conciseness. The complete
case of multi-input/multi-output systems together with
a parameter vector p (as opposed to scalar p considered
here) can be found in Carracedo et al. [2017].

3. EXAMPLE

Consider the following model of the transport and diffu-
sion of the temperature of a fluid with thermal conduc-
tivity κ on the domain Ω = [−1, 1]× [−1, 1]:

Ṫ = κ∆T − v · ∇T + u(t)f

T = 0 at t = 0

T = 1 on ∂Ω

(13)

where

v(x, y) = sin t

[
−y
x

]
+

cos t

2
(cos(π(x−y))+1)

[
1
1

]
(14)

and
f(x, y) = exp(−(x2 + y2)) (15)

is a source with strength controlled by the input u(t). We
can rewrite this model as a parametric bilinear system
with input u(t) and output (of our choice) the average
temperature over [0.5, 1] × [0.5, 1]. Then we can define
a reduced-order model as in (2) with basis satisfying
the conditions in Theorem 2. We do so for two different
parameter sets: in the first set we only sample at 0.05;
and in the second set we sample at 0.05, 0.06, 0.07, and
0.08. We show the performance of the reduced model for
a non-sampled parameter value in Figures 1 and 2. Note
that the full-order model has dimension 361 while the
reduced-order model in Figures 1 and 2 has dimension
6 and 12, respectively. The figures show that a good
approximation may be attained with this method by
sampling the parameter space appropriately.
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Fig. 1. Solution of the full order model and the reduced
order model for parameter value κ = 0.055 and input
u(t) = 0.5. Parameter sample: κ̂ = 0.05.
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Fig. 2. Solution of the full order model and the reduced
order model for parameter value κ = 0.055 and input
u(t) = 0.5. Parameter samples: κ̂1 = 0.05, κ̂2 = 0.06,
κ̂3 = 0.07, κ̂4 = 0.08.
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