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FOREWORD 

Since 1994, the MATHMOD Conference Series invites scientists, engineers, and experts to 
present their ideas, methods, applications, and results in the field of mathematical modelling 
and share their experiences in different application domains.  

Like a mathematical model, MATHMOD has constants, parameters, and variables. Constants 
are the frequency – triennial – and the date – February; aim and scope are parameters to be 
tuned with respect to the recent developments in mathematical modelling. Parameters reflect 
the organisation: the first MATHMODs were organised under the flag of IMACS (International 
Association for Mathematics and Computers in Simulation), recent MATHMODs are IFAC 
(International Federation of Automatic Control) co-sponsored conferences with all advantages 
of IFAC online publications for the MATHMOD proceedings. The local organisation team at TU 
Wien has been extended: the Institute of Analysis and Scientific Computing (ASC) has won 
the Automation and Control Institute (ACIN) as partner in the organisation of the conference. 
In addition, ARGESIM, a scientific society ‘outsourced’ from the institutes, developed from 
local supporter to international publication partner ARGESIM Publisher for the MATHMOD 
abstract volumes. New constants are other co-sponsorships, as for instance MATHMOD is 
also a EUROSIM (Federation of European Simulation Societies) Conference.  

MATHMOD variables are the participants and the contributions. Successful models have 
output variables, and these are the contributions to the MATHMOD conferences. A classifica-
tion of the contributions in model attribute parameters Full Contributions, Discussion Contribu-
tions, and Student Contributions has proven most appropriate. The success variables are the 
MATHMOD participants, spread over twenty-five countries, some concentrated in specific 
submodels, the very successful MATHMOD Minisymposia, some providing contributions to 
the classic submodels MATHMOD Thematic Sessions and MATHMOD Poster Session, and 
crowned by the MATHMOD Plenary Lectures.  

MATHMOD also developed its conference publications along with the conference series from 
classical print publications via CD publication to structured electronic publications, resulting in 
a threefold publication model parameter. The MATHMOD Proceedings in the IFAC-
PapersOnLine proceedings series (www.journals.elsevier.com/ifac-papersonline/) hosted at 
the ScienceDirect web service and the MATHMOD Extended Abstract Volume in the online 
ARGESIM Reports (www.argesim.org/mathmod-vienna/) allow for MATHMOD’s open access 
strategy for conference publications. The MATHMOD Preprint Volume contains all accepted 
MATHMOD contributions on the MATHMOD USB memory stick and serves for the conven-
ience of the participants. 

MATHMOD 2018, the 9th Vienna International Conference on Mathematical Modelling, imple-
mented all these developments in a successful conference with about 280 participants and 
about 220 contributions in snowy Vienna from February 21 to February 23, 2018 – with a 
tutorial pre-programme on February 20, 2018. 

This MATHMOD 2018 Extended Abstract Volume publishes the extended abstracts (two-
page abstracts) of all accepted Discussion Contributions and Student Contributions in the 
online ARGESIM Report 55, ISBN 978-3-901608-91-9, available with open access at the 
website www.argesim.org/mathmod-vienna/. 
Seventy-four authors submitted a Discussion Contribution and we received eighteen Student 
Contributions. A review by an associate editor and by an IPC reviewer resulted in 49 accepted 
Discussion Contributions and 15 accepted Student Contributions. A final presentation check at 
MATHMOD 2018 and a layout quality check allow us to release 64 Discussion Contributions 
and Student Contributions for publication in this Extended Abstract Volume. 



iv 

ARGESIM Publisher already took care on publication of abstracts for previous MATHMOD 
conferences, but this time for MATHMOD 2018 each contribution is assigned an individual 
DOI number for quick web access and reliable documentation. Thus, along with the publication 
of the abstract volume, metadata of the contributions are stored in publication databases for 
cross-referencing. ARGESIM Publisher’s DOI numbers for the MATHMOD 2018 Extended 
Abstract Volume is within the range DOI 10.11128/arep.55.a55nnn, where nnn is the sub-
mission number of the contribution.  

The MATHMOD 2018 Proceedings publish all accepted Full Contributions in Volume 51 no.2 
of the IFAC-PapersOnLine proceedings series (ISSN 2405-8963) at the ScienceDirect web 
service www.journals.elsevier.com/ifac-papersonline/ (open access, individual contribution DOI).  
Last but not least, MATHMOD 2018 also wants to draw attention to the possibilities of MATH-
MOD Postconference Publications. Following the IFAC copyright regulations with possible 
publication of MATHMOD 2018 contributions in IFAC journals, suitably adapted versions of 
MATHMOD 2018 contributions which contain sufficiently new material may also be submitted 
to MCMDS, the journal Mathematical and Computer Modelling of Dynamical Systems, pub-
lished by Taylor and Francis. Extended contributions with emphasis on simulation may also be 
submitted to SNE Simulation Notes Europe, the scientific journal of EUROSIM published by 
ARGESIM Publisher, Vienna.  
But MATHMOD puts emphasis also on two other very important constants – the socialising 
constant, and the traditional constant. MATHMODs are providing a – hopefully attractive – 
MATHMOD Social Programme, and MATHMODs continue the tradition with connection to 
fine arts. Consequently, MATHMOD 2018 started with a talk on Hidden Treasures of Vienna, 
given by Inge Troch, the founder of MATHMOD. MATHMOD 2018 presented a Social Lecture 
on modelling and simulation for dancing Viennese waltz, combining mathematical modelling 
and fine arts. MATHMOD 2018 continued the co-operation with Vlatko Ceric, professor for 
stochastics and modelling at University Zagreb, who creates graphics in style of Algorithmic 
Art for MATHMOD design – the title page of these proceedings show design from algorithmic 
art series Birth, www.veric.net. And finally yet importantly, MATHMOD 2018 celebrates the 
Viennese Café tradition with the MATHMOD Café Simulation, a Viennese-type Café, espe-
cially established for MATHMOD near the conference office. 

As organizers we want to express our sincere thanks to all of you for your help in making the 
MATHMOD 2018 conference a success – first to the MATHMOD 2018 participants, authors, 
and plenary lecturers. In particular, we appreciate the support of our sponsors and co-spon-
sors. Special thanks go to the members of the International Program Committee (MATHMOD 
2018 with 45 members/associate editors), who did a great job in organizing the review process 
– in total 541 reviews. A big thank goes to the organizers of the MATHMOD Minisymposia –
14 minisymposia and their 25 organizers played a key role for the success of MATHMOD 2018. 
Moreover, we are proud of the excellent work of all staff members – a big applause to our 28 
helping hands for MATHMOD 2018. Finally, we thank the IFAC publication team for the excel-
lent cooperation, and the ARGESIM Publisher’s people for support. 
MATHMOD Conference Series – a mathematical model with constants, parameters, and 
variables: the frequency constant would be glad to meet many variables at 10th MATHMOD 
2021, February 17 – 19, 2021. 

Felix Breitenecker, Wolfgang Kemmetmüller, Andreas Körner, Andreas Kugi, Inge Troch 
Vienna, February 2018 
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Keywords: Process simulators, estimation parameters, optimization problems, dynamic modelling, 
natural gas networks. 

1. INTRODUCTION

This paper presents a library for the simulation of natural gas 
networks which contains dynamic components developed in 
the simulation environment EcosimPro. It comprises the main 
components of a natural gas network that have been modelled 
based on mass, energy and momentum balances and 
additional equations for describing the dynamic behaviour of 
real gases. The complete model that describes the natural gas 
transport has been adjusted to real data taken from a 127-km 
long gas pipeline located in Mexico that is managed by the 
company Fermaca with a 16-inch pipe nominal diameter, one 
input, 4 outputs and an altitude difference of 397 m. The 
results obtained show that the developed models can be used 
to accurately simulate real natural gas networks. A picture of 
the appearance of this library is shown in Fig.1:  

Fig.1. Dynamic library of natural gas networks in EcosimPro. 

2. THE FERMACA NETWORK

Fermaca network is a 127-km long gas pipeline with a 16-
inch pipe nominal diameter and a total altitude difference of 
397 m. The receiver station is located in Palmillas and there 
are four supply points located in Atlacomulco, Pastejé, San 
Cayetano and Toluca. The topology is represented by Fig.2 
where the existing pressure (PT), temperature (TT), flow 
(FT) and composition (AT) sensors are represented. 

Fig. 2. Fermaca network topology. 

The dimensions of the gas pipelines are defined in Table 1. 

Table 1.  Dimensions of the gas pipelines 

Pipe  Length 
(km) 

Altitude 
difference (m) 

Inlet 
pressure 

(bar) 

Outlet 
pressure (bar) 

P0 64 308 51.55 - 
P3 1 0 - 47.90 
P4 12 4.5 - - 
P5 1 0 - 47.06 
P8 39 80 - 45.53 
P9 12 4.5 - - 

P10 1 0 - Estimated 

The complete model comprises 3891 variables with 91 
boundary conditions that evolve the inlet gas composition, 
one inlet and four outlet pressures, the inlet gas temperature 
and the environment temperature for each pipeline. The total 
number of equations is 3891 (2523 explicit and 1368 
differential equations). 

3. PARAMETERS ESTIMATION

Measurements from the inlet and outlet volumetric flow, 
temperature, concentration and pressure are available. These 
data have been adjusted by changing the pipeline efficiencies 
and the environment temperature. These measurements show 
that, for the chosen period of time, all the variables are in 
steady-state except the outlet temperatures in P3 and P5. This 
transient behaviour is because the outlet pipelines are not 
buried so the effect of the environment temperature on the 
gas temperature is bigger. The available measurements are 
graphically represented in Fig. 3, 4 and 5 that show the 
pressure profile, the temperature profile and the measured 
volumetric flow respectively.  

Fig. 3. Pressure profile. 
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Fig. 4. Temperature profile. 

Fig. 5. Measured volumetric flow. 

The data reconciliation problem to be solved is described by 
(1) where it can be observed that the cost function J contains 
a stationary part to evaluate the differences between the real 
(yreal) and the modelled variables (ymod) at the steady-state, 
and a dynamic component to evaluate the differences 
between the reality (yd_real) and the model (yd_mod) for the 
transient variables. For the dynamic reconciliation an 
environment temperature profile has been adjusted for P3 and 
P5 assuming that this profile follows a linear behaviour given 
by (2) where t is the time expressed in hours: 

( ) ( ) ( )( )
[

]
[ ]
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btaTenv +⋅= (2) 

The NLP optimization problems have been solved using a 
sequential approach with a sequential quadratic programming 
(SQP) algorithm implemented in SNOPT library (Gill et al., 
2008) and executed in EcosimPro software (EA Int, 2013). 

The results obtained are shown in Table 3 which presents the 
value of the adjusted parameters and Table 4 where the 
stationary error is presented: 

Table 3.  Data reconciliation results 

Adjusted 
parameter (u) 

Description Value 

eP0 (#) Efficiency of pipeline 0 1.106 
eP3 (#) Efficiency of pipeline 3 0.122 
eP4 (#) Efficiency of pipeline 4 1.131 
eP5 (#) Efficiency of pipeline 5 0.101 
eP8 (#) Efficiency of pipeline 8 1.069 
eP9 (#) Efficiency of pipeline 9 1.11 
eP10 (#) Efficiency of pipeline 10 0.108 

PoutP10 (bar) Outlet pressure pipeline 10 47.418 
aP3 (ºC/h) Slope of TenvP3 - 0.749 
bP3 (ºC) Intercept of TenvP3 23.577 

aP5 (ºC/h) Slope of TenvP5 - 0.658 
bP5 (ºC) Intercept of TenvP5 11.62 

TenvP8 (ºC) Environment temperature P8 16.00 

Table 4.  Steady-state data reconciliation results 

Variable yreal ymod Quadratic error 
QinP0 (m3/s) 3.713 3.715 4·10-6

QoutP3 (m3/s) 0.200 0.199 1·10-6 
QoutP5 (m3/s) 0.097 0.097 0 
QoutP8 (m3/s) 3.510 3.494 2.5·10-4 
ToutP8 (ºC) 16.17 16.178 6.4·10-5 

The obtained results from the dynamic reconciliation are 
graphically shown in Fig. 6 where the measurements (ToutP3, 
ToutP5) and the modelled (TmodP3, TmodP5) data are compared. 

Fig. 6. Dynamic reconciliation result (yd_real and yd_mod),
ToutP3 and ToutP5. 

6. CONCLUSIONS

In this paper, a library for the simulation of natural gas 
networks has been presented. In addition, it has been 
demonstrate that this library can be used to simulate real 
networks after a previous step of data reconciliation.  

Measurements taken from a real network has been used to 
adjust the model parameters such as: pipe efficiency or 
environment temperature. To make this, a data reconciliation 
problem is solved whose cost function combines a stationary 
part with a dynamic one. The results show that the model is 
adjusted perfectly to real data which allows using it for real 
simulations.  
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Abstract: We propose a non-integer order model for the dynamics of the coinfection of HIV and
HSV-2. We calculate the reproduction number of the model and study the local stability of the
disease-free equilibrium. Simulations of the model for the variation of epidemiologically relevant
parameters and the order of the non-integer order derivative, α, reveal interesting dynamics.
These results are discussed from an epidemiologically point of view.

Keywords: non-integer order mathematical model, HIV, HSV-2, coinfection

1. INTRODUCTION

HSV-2 and HIV fuel each other. HSV-2 infection increases
the risk of acquiring a new HIV infection by approximately
three times. In addition, people coinfected with HIV and
HSV-2 are more likely to spread HIV to others. HSV-2
is one of the most common infections in people infected
with HIV, occurring in 60-90% of the cases. HSV-2 in
co-infected persons presents greater severity and more
frequent recurrences. Moreover, in the more advanced
stage of HIV, HSV-2 can lead to more serious but rare
complications such as meningoencephalitis, esophagitis,
hepatitis, pneumonitis, retinal necrosis, or disseminated
infection, cf. WHO (2017). Several mathematical models
have been derived with the purpose of understanding
the dynamics of HIV and HSV-2 coinfection. In 2015,
cf. Basak et al. (2015) develop a model for the co-infection
of HIV and HSV-2. Numerical simulations suggest that the
HSV-2 infected individuals are at higher risk of acquiring
HIV infection when compared to HSV-2 non infected
individuals. It suggests that reducing the effective contact
rate of HSV-2 may reduce the disease burden of the co-
infection. On the other hand, controlling the transfer rate
from HIV class to AIDS class and the control of the
transfer rate of the HSV-2 exposed class to the class
infected with HSV-2 are also feasible.

Some Concepts of Fractional Calculus

Fractional calculus (FC) is a generalization to an arbitrary
(non-integer) order of ordinary differentiation and integra-
tion. Leibniz and Lagrange were the first mathematicians
to discover and unravel the power of FC. Fractional models
have been used in the literature to understand the be-
haviour of epidemiological models, where the integer-order
models fail to give a complete explanation, cf. Arafa et al.
(2013); Pinto and Carvalho (2017).

Driven by the aforementioned research, we analyse the
dynamics of the HIV and HSV-2 coinfection in a non-
integer order mathematical model. In Section 2, we in-
troduce the model. Numerical simulations of the model
for distinct values of the order of the fractional derivative
and relevant parameters, are presented and discussed in
Section 3. Finally, in Section 4, we conclude our work.

2. THE MODEL

In this section, we describe the proposed non-integer or-
der model. The population of the model is divided in
ten classes. Susceptible individuals, S, are recruited at
rate Πα. They are infected with HSV-2 at rate λ1 =
βα

1
(I+θ(Q+QH )+ηIH )

N
, where βα

1 is the transmission rate of
HSV-2, and θ and η are modification parameters. Pa-
rameter θ, (0 < θ < 1) models the fact that infectious
individuals in the quiescent stage are less infectious. On
the contrary, parameter η > 1 accounts for the increased
infectiousness of the coinfected individuals (IH). Simi-
larly, individuals S are infected with HIV at rate λ2 =
βα

2
(H+EH+ηIH+θQH)

N
, where βα

2 is the HIV transmission
rate. All individuals die by natural causes at rate µα.
Individuals in the latent stage of HSV-2, E, are infected
with HIV at rate λ2 and progress in HSV-2 infection,
for the acute phase, at rate σα

1 . Individuals in the acute
phase of HSV-2, I, are infected with HIV at rate λ2 and
move to the quiescent state, at rate qα. Individuals in
the quiescent stage of the HSV-2, Q, return to the acute
phase of infection, at rate rα and are infected with HIV
at rate λ2. Individuals infected with HSV-2, in the acute
or quiescent stage, die at rate τα1 . Individuals infected
with HIV, H , are infected with HSV-2 at rate λ1 and
develop AIDS at rate ρα1 . The AIDS induced mortality
rate is τα2 . Individuals in the latent stage of HSV-2 and
infected with HIV, EH , progress to the acute phase of
HSV infection, at rate σα

2 , and develop AIDS at rate σα
3 .
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Individuals coinfected with HSV-2 and HIV, IH , move to
the quiescent state of the HSV-2 infection, at rate qαH and
progress in HIV infection at rate σα

4 . The individuals in
the quiescent stage of HSV-2 and infected with HIV, QH ,
return to the acute phase of HSV-2 infection, at rate rαH
and develop AIDS, at rate σα

5 . The non-linear system of
fractional order ordinary differential equations describing
the dynamics of the model is:

dαS

dtα
= Πα − λ1S − λ2S − µαS

dαE

dtα
= λ1S − (λ2 + σα

1 + µα)E

dαI

dtα
= σα

1E + rαQ− (λ2 + qα + µα + τα1 )I

dαQ

dtα
= qαI − (λ2 + rα + µα + τα1 )Q

dαH

dtα
= λ2S − (λ1 + ρα1 + µα)H

dαA

dtα
= ρα1H − (µα + τα2 )A

dαEH

dtα
= λ1H + λ2E − (σα

2 + σα
3 + µα)EH

dαIH

dtα
= σα

2 EH + λ2I + rαHQH − (σα
4 + qαH + µα + τα1 )IH

dαQH

dtα
= qαHIH + λ2Q− (rαH + σα

5 + µα + τα1 )QH

dαAH

dtα
= σα

3EH + σα
4 IH + σα

5 QH − (µα + τα2 )AH

(1)

The reproduction numbers of the HSV-2 and HIV sub-
models are given by:

R1 = ρ(F1V
−1
1 ) =

βα
1 σ

α
1 (θq

α + µα + rα + τα1 )

(σα
1 + µα)(µα + τα1 )(q

α + rα + µα + τα1 )
and

R2 = ρ(F2V
−1
2 ) =

βα
2

ρα1 + µα
(2)

respectively. Thus, R0, the reproduction number of the full
model is:

R0 = ρ(FV −1) = max{R1, R2} (3)

Lemma 1. The disease-free equilibrium of the system (1)
is unstable if R0 > 1.

3. NUMERICAL SIMULATIONS

We simulate the model (1) for different values of the order
of the fractional derivative, α, and for relevant parameters.
Parameters used in the simulations are: β1 = 0.06, θ = 0.4,
η = 1.1, β2 = 0.055, Π = 60000

1000×365 , µ = 0.0027, σ1 = 0.04,
r = 0.4, q = 0.2, τ1 = 0.04, ρ1 = 0.4, τ2 = 0.09,
σ2 = 0.4, σ3 = 0.6, rH = 0.03, qH = 0.03, σ4 = 0.4,
σ5 = 0.3, and the inicial conditions are: S(0) = 5000,
E(0) = 1000, I(0) = 500, Q(0) = 100, H(0) = 1000,
A(0) = 200, EH(0) = 1000, IH(0) = 500, QH(0) = 250
and AH(0) = 100 Basak et al. (2015). We study how the
basic reproduction number R0 varies with r, the backward
transmission between the HSV-2 infected individuals, I,
and the individuals in the quiescent stage of HSV-2, Q,
and with q, the forward transmission between the HSV-2
infected individuals, I, and the individuals in the quiescent
stage of HSV-2, Q. Figures 1-2 show that increasing values
of r and decreasing values of q boost higher values of R0.
This suggests that controlling transfer rates between I
individuals and Q individuals reduces the burden of the
disease. This behaviour is repeated for all values of α.

4. CONCLUSION

We propose a non-integer order model for HIV and HSV-2
co-infection. Numerical results of the model suggest that
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the backward and forward transmission rates between the
HSV-2 infected individuals, I, and the individuals in the
quiescent stage of HSV-2, Q, can explain the effect of
HSV-2 infection on the values of HIV prevalence. Thus,
reducing these rates would possibly control the infection.
The order of the fractional derivative, α, may be used
to distinguish patients when doing fitting data from real
patients. Specificities of patients, namely, age, immune
system profile, etc, can be well addressed by α, without
changing the structure of the model.
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Tabernas, Almeŕıa, Spain (e-mail: luis.yebra@psa.es).

Keywords: Object oriented modelling, electric vehicles, dynamic modelling, automatic control.

1. INTRODUCTION

Mathematical approximations for dynamic modelling of a
Smart-Grid used in a electric solar powered small vehicle
are developed for model based control purposes. The
objective of this paper is to present the first principles and
mathematical approximations behind the systems from
which the Smart-Grid is composed of, that are mainly:
photovoltaic (PV) panel, other renewable sources, battery,
DC/DC converter, accessories, motor and regenerative
brake. For this objective, the Modelica modelling language
offers a complete set of capabilities well known so far and
spread in the literature, and the main ideas behind it
and, its evolution and description are detailed in (Cellier
(1991); Åström et al. (1998); Fritzson P. (2004)). The
Modelica Standard Library (MSL) provides an important
quantity of proven models to be reused, some of which have
been applied in the models presented in this work. For
the simulations, the Modelica tool Dymola c© (Elmqvist
(2012)) has been used. This work is inspired in Dizqah
et al. (2012).

Fig. 1 shows the experimental electrical vehicle eCARM
used for model validation, developed in the University of
Almeŕıa for research in Automatic Control.

Fig. 1. eCARM: electrical vehicle used as test rig.

? The authors thanks to the Spanish Ministry of Economy, Industry
and Competitiveness and ERDF funds for partially funding this
work.

2. DESCRIPTION OF THE SMART-GRID

This section presents the Smart-Grid composition for
the solar powered small vehicle. The main components
are shown in Fig. 2, where the electric power flows are
represented by arrows.

Fig. 2. Schematic diagram of the Smart-Grid modelled.

The bus receives power from battery, PV module and DC
motor (when working as regenerative brake); and sends
power to DC motor (when working as motor) and other
unidirectional accesories. Please, note that the exchange
of power between the battery and the bus is bidirectional.
The interface to all devices from the bus is implemented
by a DC/DC converter working in unidirectional or bidi-
rectional configurations, so special care has been taken in
the selection of this component, and its model features
are discussed in the context of the whole Smart-Grid
model. All these model devices have been modelled and
parameters from commercial solutions have been used in
the presented simulations.

3. DYNAMIC MODELLING AND SIMULATION OF
THE SMART-GRID

This section presents the main model developed that is
composed of the different submodels forming the Smart-
Grid. All the models are implemented in the Modelica
modelling language. Some of them are formulated in
steady state conditions by the use of algebraic equations,
p.e.: PV model. Others are formulated by differential
and algebraic equations (DAE): the battery, the motor,
the load and the DC-DC converter. The models of the
components are not presented due to space availability in
this document.
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Fig. 3 shows the schematic diagram representing the mod-
elled Smart-Grid that is formed by the DC motor, DC/DC
converter and a battery. The whole three components
works in a bidirectional power flow capability: the DC
motor (acting as a load or as a generator), the DC/DC
converter (controlling the power flow in one or another
direction), and the battery (discharging or charging). The
motor electrical interface is connected to a battery through
a bidirectional DC/DC converter. In the mechanical inter-
face the motor is connected to a inertia representing the
equivalent external load, that itself is connected to and
quadratic friction representing the equivalent friction of
the vehicle to the environment.

Fig. 3. Schematic diagram of DC motor working as a motor
and a regenerative brake.

Simulation results of two experiments in this configuration
are presented in Figs. 4 (1st experiment) and 5 (2nd
experiment), in which power flow directions inversions are
present. In both experiments, during the first 10s the
battery is discharging against the DC motor through the
DC/DC converter. In this time interval, due to the DC
motor electrical power flow a mechanical torque is applied
on the inertial load that is accelerated to a maximum
angular velocity. After 10s the DC converter power flow
is switched back to battery, and the motor begins to work
as a generator releasing power from the mechanical sub-
system to the electrical one, that is, acting as a generator.
This is the basic principle of the regenerative brake, al-
though a more complex arrangement is usually required to
implement a complete fully functional regenerative brake.
From 10s onwards, while the motor behaves as a regener-
ative brake, the inertial load is decelerating. Power flow in
the DC/DC converter is inverted and now directed from
brake (DC motor) to battery. The power flow can be de-
duced from the sign of the electrical intensity in variables
DC Converter CurrentToBattery (current from DC con-
verter to battery) and DC Converter CurrentToDCMotor
(current from DC converter to DC motor) represented
both in in Fig. 4. This figure additionally represents the an-
gular velocity of the motor (omega). Fig. 5 represents ad-
ditional electrical variables of the Smart-Grid in a second
experiment: voltages at both sides of DC/DC converter
(battery and DC motor), battery charge (BatteryCharge)
and duty cycle (DutyCycle) of the DC/DC converter.

4. CONCLUSION

A work in progress of a dynamic model for control design
purposes of a Smart-Grid is presented. The model is com-
posed of different components submodels, to be used in the
hybrid solar powered experimental vehicle eCARM from

Fig. 4. Simulation of DC motor working in two modes:
motor and regenerative brake. 1st experiment.

Fig. 5. Simulation of DC motor working in two modes:
motor and regenerative brake. 2nd experiment.

University of Almeŕıa. The objective of the model is to be
used in soft real time simulations and control applications
in which the model will be used in complex controllers
to be executed in real time. The main model representing
the Smart-Grid has been presented and their modelling
hypothesis outlined. All the information presented in this
work comes from the bibliography sources referenced.

Future works are the calibration and validation of the
models with experimental data from eCARM experimental
electric vehicle.
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Åström, K.J., Elmqvist, H., and Mattsson, S.E. (1998).

Evolution of Continuous-Time Modeling and Simula-
tion. In R. Zobel and D. Moeller (eds.), Proceedings of
the 12th European Simulation Multiconference, ESM’98,
9–18. Society for Computer Simulation International,
Manchester, UK.

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018

6



Modeling of Heat Transfer in Controlled
Processes for Cylindrical Bodies

Dmitri Knyazkov ∗ Harald Aschemann ∗∗ Julia Kersten ∗∗

Georgy Kostin ∗ Andreas Rauh ∗∗ Alexander Gavrikov ∗

∗ A.Ishlinsky Institute for Problems in Mechanics of the Russian
Academy of Sciences, Moscow, Russia
(e-mail: {knyaz,kostin}@ipmnet.ru)

∗∗ Chair of Mechatronics, University of Rostock, Rostock, Germany
(e-mail: {Harald.Aschemann,Julia.Kersten,

Andreas.Rauh}@uni-rostock.de)

Keywords: Control-oriented modeling, control design and optimization of dynamic systems
with distributed parameters; parameter identification, natural convection

1. INTRODUCTION

Reliable modeling is needed when different control strate-
gies are applied to distributed parameter systems, see
Butkovsky (1969); Chernousko et al. (1996). Problems
of heat transfer control for different simple bodies like
cylinders, rods, and bars were recently considered in a
large number of papers, e.g., in Kersten et al. (2014); Rauh
et al. (2015a,b). In Kostin et al. (2017), an optimal control
of the heating of a metal bar was presented. The current
paper considers modeling the active heating of a cylindri-
cal body. The cylinder may be aligned either vertically
or horizontally. Two Peltier elements provide heat fluxes
on both ends of this body. A corresponding experimental
setup is available at the Chair of Mechatronics, University
of Rostock, Germany. Experimental results obtained from
this test rig are used for the identification of the system
parameters. Simulations with the identified parameters
match the measurements with high accuracy.

2. DESCRIPTION OF THE MODEL

Let us consider the model of a cylinder insulated thermally
on both end faces. The cylinder is given by the domain
Ω = [0, l] × [0, r0] × [0, 2π], where l is its length and r0 is
its radius. It has free contact with the ambient air over
its lateral surface. The cylinder is heated up or cooled
down from both end faces by two Peltier elements, which
produce two independent heat fluxes F1 and F2. The
corresponding system of equations is given by

ρcp
∂ϑ

∂τ
= λ

(
∂2ϑ

∂z2
+

1

r

∂

∂r

(
r
∂ϑ

∂r

)
+

1

r2
∂2ϑ

∂ϕ2

)
in Ω,

∂ϑ

∂n

∣∣∣
r=r0

= α(z, ϕ)(ϑ(z, r0, ϕ, τ)− ϑa(τ)),

∂ϑ

∂n

∣∣∣
z=l

= F1(u1(τ)),

∂ϑ

∂n

∣∣∣
z=0

= F2(u2(τ)),

ϑ|τ=0 = ϑ0b.

(1)

The voltages applied to the elements, u1(τ) and u2(τ), are
adjusted during the active heating, where the functions
u1(τ), u2(τ) are defined for the time interval τ ∈ [0, T ].
The temperature ϑ(z, r, φ, τ) of the cylinder is equal to
ϑ0b at the time instant τ = 0. Temperature measurements
are available at several distinct locations on the cylinder’s
circumferential surface. The model has been derived on the
basis of the partial differential equation for heat transfer.

When specifying boundary conditions on the circumferen-
tial surface of the cylinder, we address the heat exchange
with the ambiant air and model the Peltier elements. The
latter were studied in Rauh et al. (2015a). The results
from Rauh et al. (2015a) are employed to construct the
Peltier element operation model, i.e., to define flux func-
tions F1(·), F2(·). A series of experiments was performed
for this purpose.

The process of heat transfer for a cylindrical body was
investigated in Knyazkov et al. (2017). The corresponding
analytical results are used in the current paper for esti-
mating the heat exchange with the ambient air. The heat
transfer coefficient in the model is estimated both theoret-
ically and experimentally, where the analytical and exper-
imental estimates are in a good agreement (see Fig. 1).

3. RESULTS AND OUTLOOK

The active heating for the aluminum cylinder is modeled
by the finite element method and then compared to
measurements. Experimental data are only available for
the vertically aligned aluminum cylinder. All other results
for the different alignments and materials presented in the
current paper are outcomes of pure simulations.

An example of a simulation performed for a glass cylinder
is described below. The influence of the variability of
the heat transfer coefficient along the body surface is
investigated. The results of modeling of the controlled
heat transfer for the horizontally aligned glass cylinder are
shown in Fig. 2. Solid lines show the temperatures at the
points Li = ( l2 , r0,

π
4 (i− 1)), i = 1, . . . , 5, for the constant

heat transfer coefficient α, while the dashed lines stand for
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Fig. 1. Simulated average temperature ϑsim(τk) fits the

experimental averaged temperature ϑ̂avg(τ) for the
constant heat transfer coefficient α(z, ϕ) = 8. Here,

ϑ̂avg(τ) is the average of experimentally measured
temperatures for the aluminum cylinder. The exper-

imental ambient air temperature ϑ̂a(τ) is shown by
the cyan curve

the specified dependency αhor(ϕ) of the convective heat
transfer coefficient on the azimuth angle. The difference
in temperature is significant when the dependency of the
convective heat transfer coefficient on the azimuth angle
is taken into account as compared with the case when a
constant averaged value of this coefficient is utilized.

The results show that the obtained temperature can differ
by several K when the body is heated by 10–15 K. This
demonstrates that the variability of the heat transfer
coefficient along the surface of the body should be taken
into account when considering a problem of heat transfer
in materials that have a small conductivity.

One of the future goals on the topic is to consider the
case of heating with Peltier elements that have passively
or actively cooled units from the side that is not in
direct contact with the cylinder. An experiment with a
glass cylinder should be performed that can justify the
influence of the heat transfer coefficient’s variability on the
temperature distribution inside the body. It will be very
useful in this case to register not only the temperature in a
fixed number of surface points, but also the distribution of
the surface temperature during the heating process. This
can be done by optical measurement techniques.

The designed model and the developed computational
approach can be used when modeling the heat transfer for
more sophisticated control laws. An example of optimal
control for the described system can be found in Gavrikov
and Kostin (2017). However that model did not take
into account the position dependency of the heat transfer
coefficient. The simplified analytical expressions for the
heat transfer coefficient from Knyazkov et al. (2017) can
be applied for an analytical Fourier analysis or for control
design when the dependency of the coefficient on the
position on the lateral surface of the cylinder is taken into
account.
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Fig. 2. Heating simulation for the horizontally aligned glass
cylinder for two cases: α(z, ϕ) = α and α(z, ϕ) =
αhor(ϕ)
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Abstract: This paper presents a mathematical modelling and parameter identification for the excitation 

system with detailed model of comprising cards and synchronous generator. Then, the parameters of overall 

model are identified using an optimization algorithm. Data for identification process is obtained from 

online measurements of a 154MW gas power plant which is acquired from a data acquisition system. The 

validation process is carried out in Power Factory DIgSILENT software and the proper matching between 

simulation results and measurements data demonstrates the accuracy of the proposed model.     

Keywords: electric power systems, parameter identification, close-loop identification, excitation systems, 

synchronous generator.

1. INTRODUCTION

Due to the inaccessibility to all of the power plant documents, 

having the mismatch between the existent documents and real 

system and altering the dynamic and static parameters with the 

passage of time, the dynamic parameters identification is 

essential for predicting the behavior of overall power network 

in the transient analyses. Even if the manufacturer proposed 

the as-built parameters, the validity of these parameters should 

be verified via field tests after five years. In the synchronous 

generator section, there are two identification methods: 1) 

offline identification and 2) online identification. In the offline 

methods, the synchronous generator is out of service and 

various techniques like frequency response, least squares, and 

dc excitation ones will be employed. In online methods a small 

exogenous signal is injected to the in-service machine in order 

to have no dominant effect on the normal operation of the 

system.  

Generally, the direct method of excitation system 

identification necessitates the availability of excitation current 

and voltage which is not accessible in brushless excitation 

systems. However, the comprehensive identification of 

synchronous generator parameters makes the direct method 

possible in the brushless excitation systems.(Zaker et al., 

(2016)) 

In this paper, a mathematical modeling and parameter 

identification of synchronous generator and excitation system 

for a real gas power plant are presented. In this model, the 

effective parameters are identified using imperialistic 

competitive algorithm (ICA). The identified parameters are 

put in a general single synchronous generator and excitation 

system framework in the Power Factory DIgSILENT Software 

and the simulation results are compared with experimental 

results measured from a real 154MW gas power plant.  

2. GENERATOR MODELLING

In this section, the seventh-order model of synchronous 

generator is considered. The advantage of this model is to 

consider the impacts of stator and damper windings comparing 

to the low-order linear structure such as Heffron-Philips. As a 

general role for synchronous generator modeling in a single 

machine system, flux linkages are chosen as the state variables. 

As it was stated before, this excitation system is a brushless 

type in which there is no way to measure the synchronous 

generator excitation current and voltage. Therefore, indirect 

method should be employed for the identification process. 

3. EXCITATION MODELLING

This section consists of various parts each of which plays an 

important role in the overall performance of the system. The 

understudy excitation system is an alternator-supplied rectifier 

which employs ac alternator to produce dc current for the main 

generator field winding. In this section, the model of each card 

within the excitation system with a short description on each 

one is presented. 

3.1 Main Regulator Section (RS Card) 

This is the main section of automatic excitation system in 

which by implementing two types of controller, PI and PID, 

the regulation and stability functions are addressed. 

3.2 Under-Excitation Detection (LSES Card) 

This device prevents the de-magnetization of the generator 

when absorbing reactive power, and maintains the generator 

within its operating limits. 

3.3 Over-Flux Section (LUF2 Card)  

This card provides the U/f image of a three-phase system 

which is related to the excitation system flux, and the 

difference between this voltage image and an adjustable 

reference voltage (ΔU/f). 

3.4 Power System Stabilizer (SP1 Card) 

This card provides the RS regulation card with a stabilizing 

signal as a function of the generator active power deviations. 

In fact, the oscillatory nature of the active power signal 

contains dynamical modes which their inclusion in the AVR 

section can enhance the power system dynamic performance. 

3.5 Pulse Generation Section (GITS Card) 

This section elaborates the control pulses for the thyristor 

bridge. The output of this bridge is connected to the exciter 

field windings. The result is a rectified voltage proportional to 

the control voltage of the AVR. 
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Fig. 1. The overall block diagram for modelling the excitation system

3.6 Exciter 

In this excitation systems, the responsibility of exciter is to 

provide the ac voltage as the input to the rotating diode on the 

main shaft of synchronous machine.  
3.7 Rotating Diode Bridge 

The three-phase diode bridge rectifier is commonly employed 

to rectify the output voltage of ac exciter. The inductive effect 

of ac source which is modeled with inductive reactance and 

referred to as the commutating reactance makes a delay in the 

process of commutation.  

3.8 Overall Model 

Concatenating the aforementioned sections to a single, 

comprehensive model, the overall block diagram for 

modelling the ac excitation system in this unit will be obtained. 

This model is depicted in Fig. 1. The comprising parameters 

are identified through an optimization algorithm considering 

the terminal voltage as the objective function. 

4. EXPERIMENTAL VERIFICATION

In order to verify the validity of proposed dynamical modelling 

and parameter estimation results, various experiments have 

been carried out on the 154 MW gas power plant. 
4.1 High Active Power and Positive Reactive Power  

In this test, a ±100mV voltage signal is injected to the AVR 

reference and the resulting outputs are recorded. (Fig. 2.)  

4.2 High Active Power and Negative Reactive Power 

Likewise, in this test, a ±100mV voltage signal is injected to 

the AVR reference with different reactive power and the 

resulting outputs are recorded (Fig. 3.).  

5. CONCLUSIONS

This paper presents a comprehensive modelling and 

identification procedure for the excitation system and 

synchronous generator parameters. In order to identify the 

dynamical parameters, a metaheuristic algorithm is employed 

and the terminal voltage of synchronous generator is used as 

the objective function. The accuracy of the proposed 

modelling is justified through experimental results on a real 

gas power plant. 

Fig. 2. The waveforms of measured and simulated signal for reactive 

power and terminal voltage at P=100MW and Q=17 MVAr. 

Fig. 3. The waveforms of measured and simulated signal for reactive 

power and terminal voltage at P=100MW and Q=-7.48MVAr. 
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Abstract: A simple dynamical model is proposed in this paper to describe the main time-
varying quantities in mitochondrial metabolism. The model is given in the form of kinetic
ordinary differential equations containing 11 state equations. The parameters of the model were
determined from the literature or from the authors’ own laboratory measurements. The obtained
simulation result is in good agreement with actual observation for simulating an ischemic process.
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1. INTRODUCTION

In the Neurobiochemistry working group (Institute of
Medical Biochemistry, Semmelweis University), we have
taken enzyme kinetic measurements of several mitochon-
drial enzymes, and we have determined and analyzed in-
teractions between enzymes and substrates. Therefore, a
suitable quantitative (mathematical) model is constructed
which describes the temporal changes in the quantities of
citric acid cycle’s (CAC) molecules. The modeling goal
in this research phase is to describe qualitatively the
increased/decreased operation of the catalyzing enzymes
as well as the modified operation of the intermediate
molecules.

In previous studies similar models were constructed, it
belongs to our goals is to promote further development
compared to the known models and to expand them in
other aspects. In Wu et al. (2007) the model can predict
the individual factors effects (NADH, ATP, metabolic
fluxes) in the regulation of CAC function and projects
the effect of pH and membrane potential changes on ATP
synthesis. In Korla and Mitra (2014) examination of the
process of the CAC, electron transport chain and ATP
synthesis is described. Reactions of the CAC are described
with eight differential equations with Michaelis-Menten
reaction kinetic. Korla et al. (2015) extends the earlier
model with two transporter systems.

2. BIOLOGICAL BACKGROUND

2.1 Process description

Mitochondria are cell organelles with prokaryotic origin
that established endosymbiosis with ancient eukaryotic

? The project has been partially supported by the European
Union, co-financed by the European Social Fund through the grants
EFOP-3.6.3-VEKOP-16-2017-00002 and EFOP-3.6.3-VEKOP-16-
2017-00009

cells during evolution. CAC is a complex enzyme system
in mitochondria, and a key step of metabolism. Mitochon-
dria produce energy during the catabolic degradation of
carbohydrates, fats, proteins and nucleic acids. Addition-
ally, molecules of the CAC take part as precursors in the
construction of the anabolic procedures (Nelson and Cox
(2012)).

2.2 The modeled reactions

In this work we modeled the reactions of CAC, and 3
mitochondrial transporters. The following list contains
the reactions and their catalyzing enzymes/transporters
involved in our model (Number of reaction, name of
enzyme, Enzyme Commission (EC) number of enzyme).

R1: Citrate synthase (CS, 4.1.3.7):

Acetyl-CoA + oxaloacetate→ citrate

R2: Aconitase (ACON, 4.2.1.3):

Citrate
 isocitrate

R3: Isocitrate dehydrogenase (IDH, 1.1.1.41):

Isocitrate + NAD+ → oxoglutarate + CO2 + NADH

R4: Oxoglutarate dehydrogenase (OGDH, 1.2.4.2):

Oxoglutarate + CoA-SH + NAD+ → succinyl-CoA + CO2 +

NADH

R5: Succinyl-Coenzyme A ligase (SUCLA, 6.2.1.4):

Succinyl-CoA + GDP + P → succinate + CoA-SH + GTP

R6: Succinate dehydrogenase (SDH, 1.3.5.1):

Succinate + FAD → fumarate + FADH2

R7: Fumarase (FH, 4.2.1.2):

Fumarate + H2O 
 malate

R8: Malate dehydrogenase (MDH, 1.1.1.37):

Malate + NAD+ 
 oxaloacetate + NADH

R9: Citrate transporter (CTP):

Citrate + H+ � malate

R10: Dicarboxylate carrier (DIC):

HPO2−
4 � malate

R11: Oxoglutarate carrier (OGC):

Oxoglutarate� malate

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 11-12, DOI: 10.11128/arep.55.a55145 11



3. KINETIC MODEL OF CITRIC-ACID CYCLE

3.1 Modeling goals

The modeling goals are the following:

(1) To determine the concentrations of substrates which
participate in these reactions between physiological
conditions.

(2) To predict the new equilibrium status after we mod-
ified initial conditions.

(3) To model the changed dynamic of the system in case
of specific diseases via using pathological parameters
of enzymes and/or pathological initial conditions.

3.2 Parameters

Table 1 contains the kinetic parameters. Source of param-
eters is the literature and some of them were measured in
Institute of Medical Biochemistry, Semmelweis University,
namely the values corresponding to OGDH, SDH and
MDH.

E or T substrate Vmax (µmol/min) KM (µM)

CS oxaloacetate 1.88 4

ACON citrate 3.4 470
isocitrate 120

IDH isocitrate 0.1 140

OGDH oxoglutarate 0.0086 71

SUCLA succinil-CoA 0.39 40

SDH succinate 0.299 251

FH fumarate 0.721 13
malate 140

MDH malate 1.616 580
oxaloacetate 52

CTP (T) citrate 10.5 32/27
malate 11.5 250/60

DIC (T) malate 6 490/920

HPO2−
4 6 1410/930

OGC (T) oxoglutarate 9.5 310/170
malate 10 1360/710

Table 1. Parameters and values of enzymes and
transporters

3.3 The applied kinetics

Differential equations were described by parameters of
enzymes and transporters using the Michaelis-Menten
kinetic model. The general form of the reaction rates is

V ([S]) =
Vmax · [S]

KM + [S]

Rates of reversible reactions and transports are described
with two opposite reactions. We assume constant cell
concentrations, because the volume of cell is much larger
than that of the mitochondrium.

4. COMPUTATIONAL RESULTS FOR SIMULATING
REGENERATION AFTER ISCHEMY

The simulations were implemented in MATLAB. We ex-
amine a pathological metabolic status after acute ischemy.
In this state there is a significant change in substrate

Fig. 1. Changes of concentrations after acute ischemia

concentrations. Based on literature data, the altered initial
conditions were the following: citrate decreases to 370 µM,
oxoglutarate to 26 µM, fumarate to 180 µM, malate to 795
µM, and succinate to 1355 µM.

The simulation shows that after ischemic status concen-
trations of substrates are going to physiological concen-
trations, as the system tries to recover physiological status
(Figure 1). Moreover, we can observe that approximately
three days are needed to restore normal concentrations of
mitochondrial intermediates. These results show us that
this model gives good results qualitatively, but further
improvements are needed by parameter calibration and by
the extension with other transporters.

5. CONCLUSION

A simple dynamic model for describing the dynamics of
key quantities in mitochondrial metabolism was proposed
in this paper. The model is written in the form of 12
nonlinear ODEs using Michaelis-Menten kinetics. The
model was used successfully to simulate recovery from
ischemy.
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Abstract: The possibility of a two-body system to move upward along an inclined line is
investigated. The system is controlled by the force of interaction of the bodies so that the
distance between the bodies and their velocities are periodic functions of time. The friction
between the bodies and the line is Coulomb’s dry friction. Necessary and sufficient conditions
for the possibility of periodic upward motion of the system are proved. The motion is possible
if and only if the smaller body can start moving upward the line from a state of rest while the
bigger body is at rest. An algorithm of the upward motion is presented.
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1. STATEMENT OF THE PROBLEM

Consider a system of two interacting bodies of masses
M and m on an inclined plane. Coulomb’s dry friction
forces act between the bodies and the plane. The force
of interaction of the bodies changes the velocities of the
bodies, which changes the friction forces that are external
forces for the system. Thus, the control of the force of
interaction leads to the control of the system’s center of
mass. The bodies are assumed to move along a fixed line
l on an inclined plane. Denote by α ∈ [0, π/2) the angle
between line l and the horizontal plane. The bodies are
modeled by point masses. Let x and y be the coordinates
along line l, and v and V the velocities of bodies m and M ,
respectively. Without loss of generality we assume M > m.
Let k be the coefficient of friction against the plane for
bodies m and M and g the acceleration due to gravity.

The motion of the system along the line is governed by the
equations

ẋ = v, ẏ = V,
mv̇ = −mg sinα + F + Fm,

MV̇ = −Mg sinα− F + FM

(1)

where F denotes the force applied to body m by body M ,
and Fm and FM denote Coulomb’s friction forces applied
to the bodies by the plane. The friction forces are defined
by the relations

Fm = −kmg cos α sgn v, v 6= 0,
|Fm| ≤ kmg cos α, v = 0,

FM = −kMg cos α sgn V, V 6= 0,
|FM | ≤ kMg cos α, V = 0

(2)

We consider the motions of the system in which the
distance between the bodies and the velocities of both
bodies are expressed by time-periodic functions, y(t+T )−
x(t+T ) ≡ y(t)−x(t), v(t+T ) ≡ v(t), V (t+T ) ≡ V (t).
Here, T is the time period which may be chosen arbitrarily.
? This study was supported by the Russian Foundation for Basic
Research (projects 17-01-00652, 17-51-12025).

In other words, we consider the motions with constant
shifts of each body for the period, the shift being the same
for both bodies: y(t + T )− y(t) ≡ x(t + T )− x(t) ≡ const.
We call such motions periodic motions. When considering
the motions of the system during a period, the periodicity
conditions are equivalent to the boundary conditions
y(T )−y(0) = x(T )−x(0), v(T ) = v(0), V (T ) = V (0) (3)

The question is whether the periodic motion of the system
upward along the line is possible.

We assume that if there is no interaction between the bod-
ies and both bodies are at rest at some time instant, they
will remain at rest on the inclined line. This assumption
implies

tg α ≤ k (4)
Additionally, we require that the force governing the
uniform upward motion of the smaller body m be not equal
in its absolute value to the force governing the uniform
downward motion of the larger body M , kmg cos α +
mg sinα 6= kMg cos α − Mg sinα. This condition can be
written as

tg α 6= k
M −m

M + m
(5)

This is necessary for determining uniquely which of the
bodies will start moving first from the state of rest of the
entire system when an appropriate interaction force begins
to act.

Problem. Find the condition allowing the periodic motion
for the two-body system upward along the inclined line,
provided that relations (1) -(5) and the inequality

x(T ) > x(0) (6)
hold.

2. CRITERIA OF POSSIBILITY OF THE PERIODIC
UPWARD MOTION

Proposition. The periodic motion of the two-body system
upward along an inclined line is possible if and only if
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tg α < k
M −m

M + m
(7)

Proof. Let us prove first the sufficiency of the condition
(7). To do so, we will construct explicitly a periodic
motion of the system that shifts it upward along line l,
provided that inequality (7) holds. Let the system be at
rest at the beginning of the motion, v(0) = V (0) = 0. At
the first stage of the motion, body m moves downward,
while body M moves upward. Choose some time interval
[0, t0] and a constant interaction force F so that body M
begins to move upward, namely, let F ≡ −(Mg sinα +
kMg cos α + A), A > 0. Then body M will move with
an acceleration upward and body m will move with an
acceleration downward,

MV̇ = A,
mv̇ = −(M + m)g sinα− (M −m)kg cos α−A

(8)

After that we stop controlling the system and set F ≡ 0
for an interval [t0, t1], with the duration of this interval
being large enough for both bodies to have time to come
to a stop due to friction, so that V (t1) = v(t1) = 0. Denote
x(t1) = x1, y(t1) = y1, y1 > 0, x1 < 0.

Let at the second stage of the motion body m overtake
body M , while body M is at rest. Define the control force
F as follows:

F (t) = mg sinα + kmg cos α + B, t ∈ [t1, t1 + δ],
F (t) = mg sinα + kmg cos α−B, t ∈ [t1 + δ, t1 + 2δ]

(9)
If the value of B is small enough, body M stays at
rest. Indeed, the inequality (7) implies that there exists
a positive value B such that the inequality

mg sinα + kmg cos α + B + Mg sinα < kMg cos α (10)
holds. This inequality means that the value of the sliding
friction force for body M is greater than the modulus of
the sum of all other forces applied to this body; hence
body M is at rest. The motion of body m is governed by
the equations

mv̇ = B, t ∈ [t1, t1 + δ], v(t1) = 0
mv̇ = −B, t ∈ [t1 + δ, t1 + 2δ] (11)

At the time instant t1 + 2δ, body m comes to a stop,
v(t1 +2δ) = 0. By equating the distance travelled by body
m for time 2δ to the value y1−x1, one can find the duration
2δ = 2

√
m
B (y1 − x1) required for body m to overtake body

M and to come to a stop. By letting T = t1 + 2δ we
complete the construction of the control subject to which
the system is at rest at the beginning and at the end of the
period and both bodies travel the distance y1 > 0 upward
along line l. This completes the proof of sufficiency of the
condition (7).

Now we will prove the necessity of (7). Let us suppose that
the periodic motion of the system upward along the line is
possible. Denote by u the velocity of the center of masses
of the system

u = (m + M)−1(mv + MV ) (12)
Equations (1) involve the equation of motion for the center
of mass:

(m + M)u̇ = −(m + M)g sinα + FM + Fm (13)
If the upward motion of the system is possible, then a
time interval exists such that the center of mass velocity is
positive on this interval. Hence, one can take a time instant

t∗ from the left neighborhood of the point of maximum of
the function u(t), so that the velocity is positive and its
derivative is nonnegative at this point,

u(t∗) > 0, u̇(t∗) ≥ 0. (14)
The first inequality (14) means that v(t∗) > 0 or V (t∗) >
0. If V (t∗) > 0, then FM = −kMg cos α and the second
inequality (14) cannot hold by virtue of equation (13) and
the inequalities |Fm| ≤ kmg cos α and m < M . The center
of mass necessarily decelerates if the larger body moves
forward. Let now v(t∗) > 0. Then Fm = −kmg cos α,
and the second inequality (14), with (13) being taken into
account, can be represented as follows:

FM ≥ (m + M)g sinα + kmg cos α (15)
Hence, taking into account the relation |FM | ≤ kMg cos α
we obtain k(M − m)g cos α ≥ (M + m)g sinα. This
inequality combined with condition (5) lead to (7), which
completes the proof of the necessity of the inequality (7).

Remark 1. This proposition can be reformulated as follows.
The periodic motion of a two-body system upward along
an inclined line is possible if and only if body m can
move upward with nonnegative acceleration while body
M is at rest. The equivalence of the reformulation to the
proposition is proved by the facts that the inequality (7)
is equivalent to inequality (10) with B from the right-
hand neighborhood of zero and inequality (10) provides the
motion of body m upward with nonnegative acceleration
with body M at rest.

Remark 2. Let the system of n interacting bodies with
masses

m1 ≤ m2 ≤ · · · ≤ mn, M∗ =
∑

i=1,..n

mi (16)

on an inclined line with dry friction be considered. The
periodic motion of this system upward along an inclined
line is possible if and only if the body with minimal mass
m1 can move upward with a nonnegative acceleration, with
all other bodies being at rest. This condition implies

tg α < k
M∗ − 2m1

M∗
(17)

The proof of the necessity of this condition is similar to
that for a two-body system. The sufficiency is proved by
presenting the motion similar to that presented above, for
which at the first stage bodies mi, i = 2, . . . n move as a
single whole (as the larger body for the two-body case),
and at the second stage all these bodies are at rest.

Remark 3. Let now two bodies of the system have different
coefficients of friction and let the friction be anisotropic.
Denote by k+

m, k−m and k+
M , k−M the coefficients of friction

for upward and backward motions of bodies m and M ,
respectively. We assume that at least one of the inequalities
k−MM > k+

mm, k−mm > k+
MM holds and that the system

can stay at rest, which implies
tg α < (k−MM + k−mm)(M + m)−1 (18)

The periodic motion of the system upward along an
inclined line is possible if and only if

tg α <
max{k−MM − k+

mm, k−mm− k+
MM}

M + m
(19)

or, which is the same, one body can move upward with
nonnegative acceleration while the other body is at rest.
The proof of this remark is similar to that of Proposition.
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1. INTRODUCTION

The object-oriented modelling paradigm (see, e.g., Matts-
son et al. (1998), Tiller (2001)) allows to build system
models by connecting component or sub-system models in
an arbitrary fashion through connectors, as long as the
connection makes sense from a physical point of view,
without worrying about the internal structure or imple-
mentation of the components.

Object-oriented languages and modelling tools have been
used for a long time for the modelling of hydraulic systems,
where pressurized oil is used to power mechanical equip-
ment, see, e.g., the HyLib library (Beater, 2000), which
later became the commercial HydraulicsLibrary, or other
modelling libraries described by Harman (2006) and Pare-
dis (2008). Several papers describe applications of these
libraries to specific modelling needs, see, e.g., Harman
(2006), or Chandrasekar and Tummescheit (2014).

In all these models, hydraulic dynamics is strongly coupled
with mechanical dynamics. In principle, based on the time
scale or frequency range of phenomena one is interested
into for a specific simulation study, it would be possible to
leave out the compressibility effects of the fluid and/or the
inertia of some mechanical elements in some component
models. In their recent experience, the authors have found
out that allowing complete freedom in taking into account
these phenomena can lead to severe numerical issues when
system models are built out of them. To the author’s
knowledge, this aspect has never been explicitly discussed
in the literature.

The goal of this paper is to explain these issues by means
of a simple paradigmatic system model, and to provide
guidelines for library developers to allow the arbitrary
connection of component models, according to the object-
oriented modelling principles.

2. THE PARADIGMATIC SYSTEM MODEL

The paradigmatic system is shown in Fig. 1. A rigid
cylindrical chamber of section A containing a compressible
fluid (usually oil) at pressure p, with nominal density ρ0

Fig. 1. Sketch of the paradigmatic system

at pressure p0 and compressibility kp, is delimited by a
piston of mass m on the left side and by a valve with
mass flow rate w and flow coefficient Av on the right side.
The piston is connected to a mechanical load with elastic
coefficient kx and friction coefficient kv, which applies a
force F on the piston that is the result of the elastic and
friction effects plus an extra prescribed force F0. The valve
outlet is connected to a reservoir with fixed pressure p0.

The system model is declaratively defined by the following
set of differential-algebraic equations (DAEs).

A[ρ0 + kp(p− p0)]ẋ+Axkpṗ− w = 0 (1)

ẋ− v = 0 (2)

mv̇ −Ap− F = 0 (3)

F − F0 + kxx+ kvv = 0 (4)

w −Av

√
ρ0|p0 − p|sign(p0 − p) = 0 (5)

where Eq. (1) is the mass balance in the chamber, Eqs.
(2)-(3) describe the piston motion, Eq. (4) describes the
mechanical load, and Eq. (5) the valve flow. F0 and Av are
known system inputs, functions of time.

3. STRUCTURAL ANALYSIS

The system (1)-(5) is a DAE in the form F (y, ẏ, v, t) = 0;
this DAE has index one if the Jacobian matrix ∂F

∂z (where
z collects all terms in ẏ and v) has a non-zero determinant,
which means that the system can be locally solved for z
given y and t.

If both fluid compressibility and mechanical inertia are
taken into account, then m > 0 and kp > 0. In this case,
it turns out that

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 15-16, DOI: 10.11128/arep.55.a55154 15



∣∣∣∣∂F∂z
∣∣∣∣ = kpmAx. (6)

As the cross section A is obviously positive, the system
has index 1 provided that x > 0, i.e., the chamber is not
completely empty of oil, which is a reasonable assumption
for the validity of such a model.

When the load is much less stiff than the fluid, one may
want to neglect the fluid compressibility, i.e., set kp = 0,
to get rid of one fast state in the model. In this case∣∣∣∣∂F∂z

∣∣∣∣ =
Avm

2
√
p0 − p

sign(p0 − p) (7)

The determinant is undefined when p = p0, but this is
due to the slightly naive formulation of the valve equation
(5), whose derivative with respect to p approaches infinity
as p → p0. This problem can be solved by using a more
appropriate formulation of that law that does not become
singular at that point, e.g., by substituting the function√
hsign(h) with the function

h
4
√
h2 + ε2

(8)

which is close to the original function when |h| � ε but has
a finite derivative in the neighbourhood of zero (Casella,
1999). Then ∣∣∣∣∂F∂z

∣∣∣∣ =
Avm√
ε

(9)

In this case the index of the system is normally 1, but
becomes 2 when the valve is closed (Av = 0), which is a
completely normal condition in hydraulic system models.

Alternatively, when the piston has a small mass (e.g., it is
a membrane), one may want to neglect it, setting m = 0,
but still accountinf for the fluid compressibility kp > 0. In
this case ∣∣∣∣∂F∂z

∣∣∣∣ = kpkvxA (10)

Now, by assumption kp > 0, A > 0, and x > 0 if the
chamber is not empty. In principle, the model is index 1 if
the viscous friction term kv is non-zero. This is in general
a critical assumption: for example, if one is modelling an
accumulator with a membrane, it is very hard to identify a
viscous friction term, as the reaction force of the membrane
is inherently only depending on its deformation. If more
sophisticated friction models were used, the condition
equivalent to kv 6= 0 would be that is is always possible to
invert the force-velocity relationship, computing the force
given the velocity, which for example not possible when
modelling stiction.

In the extreme case, one may want to avoid the stiff
dynamics entirely and neglect both fluid compressibility
and inertia, thus setting kp = 0 and m = 0. In this case∣∣∣∣∂F∂z

∣∣∣∣ = ρ0A
2 +

Avkv√
ε

(11)

Since Av ≥ 0, and assuming kv ≥ 0, that is, if a viscous
friction term is present, it is dissipative, then the system
is always index 1. If more sophisticated friction models
including stiction are used, it is impossible to say based
on this analysis that the system will always be index 1,
as they may entail kv < 0 during transients. Further

analysis would be necessary, taking into account such
friction models explicitly, but this goes beyond the scope
of this paper.

4. DISCUSSION AND CONCLUSION

The analysis carried out in the previous section shows that
in the two intermediate cases, and possibly in the last
one, the system can change the index during simulation,
which will cause a run-time error in existing equation-
based, object-oriented modelling tools (EOOLTs), that
cannot handle this case. This results gives a concise
and clear explanation of the numerical problems that
were experienced with real-life models taking the same
modelling assumptions.

The results of the analysis suggest that the best option
to guarantee the safe and robust simulation of equation-
based, object-oriented hydraulic systems coupling fluid
dynamics and mechanical dynamics is to always take into
account both fluid compressibility and mechanical inertia
of pistons and membranes, even though this may end up
in modelling very stiff dynamics. Neglecting both fluid
compressibility and mechanical inertia can be an option to
reduce the number of fast modes in the system’s dynamics,
but only if simple enough (e.g. linear) models are used
to represent friction phenomena. In the author’s opinion,
these findings are particularly useful for developers of
reusable component libraries for hydraulic power and
actuation systems.
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1. INTRODUCTION

State-space forms of singular nonlinear systems are descriptors
(Dai, 1989):

E(x)ẋ(t) = A(x)x(t), (1)
where x(t) ∈ Rn is the state, A(x), E(x) ∈ Rn×n are smooth
matrix nonlinear functions, and, importantly, E(x) has not full
rank. Simulation of these systems requires proper initialisation
to hold the algebraic restrictions along the time (Brenan et al.,
1995); moreover, sudden loss of rank in E(x) may lead to
instantaneous novel algebraic restrictions which might be con-
sistent/inconsistent, persistent/evitable. Simulation of DAEs is
largely based on the Pantelides algorithm in Pantelides (1988)
which, under certain conditions, transforms it into an ordinary
differential equation (ODE). Since we are interested in stability
of equilibrium points, in the sequel, it will be assumed that x =
0 is an equilibrium point of (1). Lyapunov-based analysis of
such systems is still on course, based on generalised Lyapunov
functions, descriptor redundancy forms, and/or the Finsler’s
Lemma (Ishihara and Terra, 2002); only particular cases are
available in the nonlinear case: when explicit algebraic restric-
tions are provided (Ebenbauer and Allgöwer, 2007), the rank of
E(x) is fixed (quasi-linear) (Riaza and Zufiria, 2001), or E(x) is
constant (Yang et al., 2013).

This paper adopts a different perspective: it considers matrix
sE(x) − A(x) as a generalised pencil and det(sE(x) − A(x))
as the generalised characteristic polynomial associated to (1);
based on them, stability is established by mimicking eigenvalue
tests from linear systems theory. Since (1) is not a linear-
parameter- nor a time-varying system, guaranteeing that the
roots of det(sE(x) − A(x)) are always in the left half of the
complex plane C− is enough to ensure asymptotic stability of
the origin by linearisation arguments. To check the eigenvalue
condition for a given a compact subset of the state space
Ω ⊂ Rn, our proposal rewrites det(sE(x) − A(x)) as a polytope
of vertex polynomials; then, a variety of tests derived from

⋆ The authors would like to thank the support provided by the CONACYT
scholarships 423601 and 415714, the postdoctoral fellowship for CVU 366627,
the ITSON PROFAPI Project CA-18 2017-0088, and the PFCE 2016-17.

the Edge Theorem (Bartlett et al., 1988) come at hand to
provide sufficient conditions for the polytope to be stable; these
tests are expressed in the form of linear matrix inequalities
(LMIs) (Boyd et al., 1994). Importantly, the singular nature
of the systems is mirrored by degree dropping of some vertex
polynomials, which obliges to recur to further refinements of
the Edge Theorem (Białas and Góra, 2012).

2. POLYTOPES OF POLYNOMIALS

A bounded expression can always be written as a convex
sum of its bounds; indeed, given z ∈

[

z0, z1
]

, it can be al-

gebraically checked that z = w0(z)z0 + w1(z)z1 with w0(z) =
(

z1 − z
)

/
(

z1 − z0
)

and w1(z) = 1 − w0(z); therefore, assuming

all non-constant terms z j(x) ∈
[

z0
j , z

1
j

]

, j ∈ {1, 2, . . . , r} in
the coefficients of det (sE(x) − A(x)) are bounded in Ω, where
z0

j = minx∈Ω z(x) and z1
j = maxx∈Ω z(x), they can be written as

z j(x) =





z1
j − z j(x)

z1
j − z0

j





︸        ︷︷        ︸

w j
0(x)

z0
j +





z j(x) − z0
j

z1
j − z0

j





︸        ︷︷        ︸

w j
1(x)

z1
j , (2)

where w j
0(x)+w j

1(x) = 1, 0 ≤ w j
i (x) ≤ 1, i ∈ {0, 1} for any x ∈ Ω

(convex sum property).

Once this is made, det (sE(x) − A(x)) can be rewritten as a
polytope of polynomials in s; each of these vertexes has con-
stant coefficients which correspond to a particular combina-
tion of minima and maxima of the r non-constant terms in
det (sE(x) − A(x)). Let i = (i1, i2, . . . , ir), ∀ j : i j ∈ {0, 1},
wi(z) = w1

i1
(z)w2

i2
(z) · · ·wr

ir
(z); then:

det (sE(x) − A(x)) =
∑

i

wi(z)pi(s), (3)

where
∑

i wi(z) =
∑1

i1=0
∑1

i2=0 · · ·
∑1

ir=0 w1
i1

(z)w2
i2

(z) · · ·wr
ir

(z) =
1, 0 ≤ wi(z) ≤ 1, pi = det (sE(x) − A(x))|wi=1. Since
rank(E(x)) < n certain vertex polynomials pi(s) will present
degree dropping.
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Example 1. Consider the nonlinear singular system
[

(x1 − x2)2 0
0 1

] [

ẋ1
ẋ2

]

=

[

1 −1
−1 − x2

1 −2

] [

x1
x2

]

, (4)

whose generalised characteristic polynomial is

(x1 − x2)2 s2 +
(

2(x1 − x2)2 − 1
)

s − x2
1 − 3. (5)

As expected, sudden loss of rank in the left-hand side of (4)
and degree dropping of (5) occur when x1 − x2 = 0. An
exact polytopic rewriting of (5) for the compact set Ω where
z1(x) = (x1 − x2)2 ∈ [0, α] and z2(x) = x2

1 ∈ [0, β] with
α, β > 0, can be done by writing (3) with p00(s) = −s − 3,
p01(s) = −s − β − 3, p10(s) = αs2 + (2α − 1)s − 3, and
p11(s) = αs2 + (2α − 1)s − β − 3 as vertex polynomials, and
w1

0(z) =
(

α − (x1 − x2)2
)

/α, w2
0(z) =

(

β − x2
1

)

/β, w1
1 = 1 − w1

0,

and w2
1 = 1 − w2

0 as convex interpolating functions. Again,
degree dropping occurs in vertex polynomials p00(s) and p01(s)
as a result of the system singularities.

3. POLYNOMIAL-BASED STABILITY

Let H(·) ∈ Rn×n denote the Hurwitz matrix of a polynomial
p(s) = ansn + an−1sn−1 + · · · + a1s + a0. Since the seminal
paper of Białas (1985), sufficient and necessary conditions
for the stability of convex combinations of two n-th degree
stable polynomials have been established by constructing an
“edge-like” test which examines whether the real eigenvalues of
the composite matrix H12 = −H(p1(s))H−1(p2(s)) are strictly
negative, where p1(s) = sn + an−1sn−1 + . . . + a1s + a0 and
p2(s) = sn + bn−1sn−1 + . . .+ b1s+ b0 are the stable polynomials
in the convex combination λp1(s) + (1 − λ)p2(s), λ ∈ [0, 1].
This criterium has been put into an LMI form for polytopes of
stable polynomials (Sánchez and Bernal, 2017). When degree
dropping of some vertex polynomials occur, refinements exist
that are based on further considerations on the geometry of the
complementary regions (Białas and Góra, 2012).
Theorem 1. Assume the origin x = 0 of the nonlinear singular
system (1) is an equilibrium point. Assume also that the system
has a generalised characteristic polynomial with exact convex
representation (3) in the compact set Ω. Then, the origin x = 0
is asymptotically stable in the sense of singular systems if there
exists matrices Mij of adequate dimension, such that LMIs

Mij+MT
ij >0, H(pi)MijH

T (pj)+H(pj)M
T
ij HT (pi)≥0, (6)

are feasible for all i, j ∈ {0, 1}r such that deg(pj) ≥ deg(pi),
i , j, provided each vertex polynomial pi is stable.

Proof. If conditions (6) hold, then Mij + MT
ij > 0 and

H−1(pj)H(pi)Mij+MT
ij HT (pi)H−T (pj) ≥ 0 hold, which implies

that the real eigenvalues of each H−1(pj)H(pi) are all non-
negative (Ebihara and Onishi, 2009). This, in turn, implies that
the convex sum (3) is a polytope of stable polynomials with
possibly degree dropping in some of its vertexes (Białas and
Góra, 2012). Recall that the convex sum (3) is algebraically
equivalent to p(s, x) = det(sE(x) − A(x)) for all x ∈ Ω,
which therefore implies that there is a P ∈ Rn×n such that
ET (0)P = PT E(0) ≥ 0 and PA(0) + AT (0)P ≤ 0. Thus, a
linearisation argument allows using V(x) = xT ET (0)Px as a
Lyapunov function for all the trajectories in a sufficiently small
vicinity within a subset X ⊂ Rn with dim(X) ≤ rank(E(0)), to
which the dynamics of the system are restricted, i.e., asymptotic
stability of the origin x = 0 in the sense of singular systems is
granted.

Example 1 (continued): Consider again the nonlinear singu-
lar system (4) in example 1, whose characteristic polynomial
is given in (5). Modelling as shown thereby with α = 100 and
β = 25 leads to four polynomials p00(s) = −s−3, p01(s) = −s−
28, p10(s) = 100s2 + 199s− 3, and p11(s) = 100s2 + 199s− 28,
where the last two are unstable. This implies the test is unable
to establish stability in this region, which is consistent with
the fact that it includes unstable trajectories. Notwithstanding,
since E(x) loses rank in x1 − x2 = 0 leading to a persistent
algebraic restriction which includes the origin, the generalised
characteristic polynomial can be reduced to p(s, x) = −s − 3 +
x2

1 which, taking z2(x) can be modelled as the convex sum of
p0(s) = −s − 3 and p1(s) = −s − 28 whose associated Hurwitz
matrices yield feasible LMI conditions in Theorem 1 with

H(p0)=
[

−1 0
0 −3

]

, H(p1)=
[

−1 0
0 −28

]

, M12=

[

0.5053 0
0 0.0061

]

.

This result confirms that stable trajectories are indeed those in
the algebraic restriction x1 − x2 = 0 where E(x) loses rank.
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1. INTRODUCTION

Design of experiments (DoE) is a set of well-established
and over 100 years evolved rational methodologies for
validating and discovering relationships between controls
and responses of an input-output system in a data efficient
way. The philosophy behind DoE is that controls or factors
affect the system’s response. The response of a system to
a specific control may be observed and thus by an ap-
propriate set of applied controls (=DoE), one may gather
information of the system’s mechanism to disentangle the
relationship between controls and responses. Responses
may comprise system states but also observables or per-
formance measures derived from the system states.

The use of mathematical models for analysing complex
processes is a powerful tool to gain a deep system under-
standing. However, this approach requires realistic, predic-
tive mathematical models. During the model development
phase, scientists have to cope with numerous challenges,
e.g., limited knowledge about the underlying mechanisms,
lack or exorbitance of dynamic or static experimental
data, large experimental and process variability. Given a
specific model class, a plethora of many different method-
ologies to optimally identify a specific model class struc-
ture have been developed since the mid of 20th century.
This includes on the one hand methods for discrimination
of competing structures but also methods for parameter
estimation. We would like to discuss, whether further
methodologies in the direction of model-based design are
still needed, and if yes, to what extent. Further, given the
trend of gathering massive data of a system of interest
we highlight the analogy of DoE for systems identification
and big data analysis. Within the age of digitalization,
analysis and modelling of big data have become an active
field of DoE application. Big data typically comprise mas-
sive volume, heterogeneous and unexplored data collected
in areas across science (e.g. structural biology, particle
physics), health (e.g. genomics, predictive healthcare),
economics (e.g. market analysis), ecology, business (e.g.
process monitoring), Web 2.0 sources (e.g. social media,
internet of things) and robotics (e.g. sensoring data) (Fan
et al., 2014). To extract information, modelling big data
with empirical (statistical) or mechanistic models with

classical approaches is often note feasible and thus, sev-
eral approaches from design of experiments have emerged
to facilitate big data modelling. Specifically, model-based
DoE supplies a rational for targeted sampling in divide-
and-conquer algorithms or for sequential learning, which
in classical DoE is known as sequential or multi-stage
DoE (Box and Draper, 1986). The classic DoE based
on statistical performance measures, e.g., A-, D-, E-, I-
, T-optimality, have been complemented by probabilistic
model-based performance measures. These measures in-
clude global sensitivities, information-based criteria and
Bayesian inference based on the posterior calculation,
which have been massively studied and applied in systems
biology (Schenkendorf and Mangold, 2013; Flassig and
Sundmacher, 2012).

2. DOE FOR BIG DATA ANALYSIS

Over the last decade, many research and engineering dis-
ciplines have become more and more data intense. Big
data have arisen from innovative experiments, measure-
ment and monitoring devices generating high-dimensional,
massive sample sizes. Big data are therefore often difficult
to analyse, and the extraction of information is notoriously
laborious. In a sense, a big dataset can be understood as a
complex system that is yet to be identified. Thus, the goal
of modelling and analysing big data is similar to what
is desired in complex systems identification: (i) under-
standing of the interdependencies of factors and responses
that shape the dataset and (ii) accurate predictions of
future outcomes. As in classical systems identification,
the maxim of data efficiency is given. At first sight, this
requirement seems awkward. It is the high-dimensional,
massive sample property that generates several interesting
emergent phenomena: scalability, storage bottleneck, noise
accumulation, spurious correlation, incidental endogeneity
and measurement errors (Fan et al., 2014).

During the initial rise of big data, statistics and related
disciplines of data analysis have failed to adequately ad-
dress big data properties and related challenges (Wang
et al., 2016). The situation has changed recently when big
data challenges in many different application areas have
naturally driven the development of new big data method-
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ologies. Even though it is easy to see that model-based
DoE methodologies for complex systems identification can
be tailored to cope with the emerging phenomena in big
data, studies and methodologies to DoE-based big data
approaches have only recently been developed (Drovandi
et al., 2017).

Initially, big data methods have considered the entire
dataset, and thus scalability has been the focus. Scalability
has been addressed by methods including ’divide-and-
conquer’ approaches (Guha et al., 2012), Bayesian infer-
ence based on a consensus Monte Carlo algorithm (Huang
and Gelman, 2005; Scott et al., 2016), principle component
analysis (Kettaneh et al., 2005), clustering approaches
(Bouveyron and Brunet-Saumard, 2014), least angle re-
gression (Efron et al., 2004), and sparsity assumptions
(Hastie et al., 2015). In contrast to using the complete
dataset, DoE-based methods have been recently developed
following the paradigm that a well-chosen subset of the
big dataset can deliver equivalent answers compared to
the full dataset at considerably less effort (Drovandi et al.,
2017). As in classical DoE for systems identification or in
Bayesian optimization, exploration and exploitation are
the pillars of optimally analysing big data. An advantage
of the DoE-based approach to big data is the avoidance of
pitfalls resulting from big data effects and classical, well-
established statistics can be applied. However, the DoE
itself needs to be well chosen.

3. OUTLOOK: WHERE TO GO?

Uncertainty quantification, meta-modelling and big data
modelling are active fields of application of DoE. Whereas
uncertainty quantification has advanced its methods to
efficient non-linear transformations of random variables,
we still need improvements when it comes to optimizing
stochastic, distributed complex systems. The optimization
of systems with stochastic spatio-temporal fluctuations in
combination with distributed properties is a challenging
task, either from the modelling but also from the opti-
mization point of view. The current popularity of Bayesian
optimization and machine learning algorithms should be
used to foster cross-disciplinary research including classic
DoE; sequential design, Bayesian optimization and adap-
tive learning are three sides of the same coin. A coalition
between researchers from classical DoE, Bayesian opti-
mization and machine learning community in combination
with applications in the areas of big data applications (e.g.
process monitoring, earth science, genomics, internet of
things, robotics, social media), biotechnology, pharmaceu-
tics and systems medicine will have a bride future in terms
of scientific and socio-economic impact.

DoE-based big data analysis is in the need of further
research in the direction of noise accumulation and spu-
rious patterns in high dimensional data, improvement of
computational and algorithmic efficiency and stability and
mastering heterogeneity, experimental variations and sta-
tistical bias associated with combining data from different
sources (Fan et al., 2014).

Finally, even though model-based DoE approaches have
been very much advanced over the last decades, the hard
work still needs to be done: given a specific problem, scien-
tists and engineers still have to think critically about the

problem. This also includes a keen awareness of strengths
and weaknesses of their chosen tools. This statement may
seem trivial, however, in the time of open source libraries,
out of the box solutions, nearly limitless computing power
and time pressure, superficial understanding of modelling
and simulation methods can be disastrous. This implicates
that we as the community have to provide access and
support to well-documented open source implementations,
tutorials and workshops. The recent MATHMOD Min-
isymposium Model-Based Design of Experiments: Where
to go? is heading in this direction bringing experts from
different fields together and taking up the viewpoints of
the modelling and the big data community.
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1. INTRODUCTION

The concept of resonance is well known in the study of
wave energy converters (WECs), with the natural fre-
quency of WECs typically designed to resonate with the
external excitation provided by the input wave field. Para-
metric resonance, on the other hand, has received very
little attention, likely due to the complexity of the mod-
els required to capture this nonlinear phenomenom, com-
pared to the traditional linear/frequency domain models
favoured in WEC research and analysis. This presentation
examines the modeling methods available for simulating,
analysing and controlling parametric resonances in wave
energy devices. The traditional linear hydrodynamic mod-
els are discussed and contrasted against nonlinear hydro-
dynamic modelling approaches, in terms of model fidelity
and computational requirements. The effect of the mooring
system dynamics on the parametric excitation of the WEC
system is discussed and modelling methods reviewed. Fi-
nally, the effect of the WEC’s power take-off (PTO) system
on extracting energy from the WEC and controlling the
occurance of parametric resonance is detailed.

2. PARAMETRIC RESONANCE IN WECS

Parametric resonance is a phemonenon caused by the time-
varying changes in the parameters of a system (Fossen and
Nijmeijer (2011)). While resonance causes the oscillations
of a system to grow linearly with time (until damping
limits further growth), parametric resonance causes an ex-
ponential increase in oscillation amplitude, and can often
be unexpected since it is a nonlinear phenomenom not
predicted by linear analyses. Parametric resonance has
been observed and studied in floating bodies, dating back
to the work of Froude (1861) who described that large roll
motions occur when a ship’s roll natural period is twice
the heave/pitch natural period. This parametric coupling
between modes of motion has been investigated in offshore
engineering fields, where parametric resonance is consid-
ered an unwanted problem (with container ships losing
cargo due to large parametric roll motions for example),

? This paper is based upon work supported by Science Foundation
Ireland under Grant No. 13/IA/1886.

and research focussing on suppression and stabilisation of
parametric pitch/roll.

Likewise, parametric resonance has been observed to in-
duce large amplitude pitch/roll motions for WECs, how-
ever very little investigation has been undertaken. Babarit
et al. (2009) assessed the potential of an advanced nu-
merical model in capturing the nonlinear hydrodynamics
of a pitching type WEC, as compared against physical
wave tank experiments. Of interest, for wave frequencies
close to half the WEC roll natural frequency, parametric
roll was observed in the experiments, which was only
predicted by advanced nonlinear hydrodynamic models,
but not the traditional linear ones. Tarrant and Meskell
(2016) investigated the parametric resonance in a 2-body
self-reacting WEC, due to the varying centre of mass as the
bodies translate relative to each other. Gomes et al. (2017)
investigated experimentally how additional damping may
surpress the parametric resonance in a spar-bouy type
oscillating water column (OWC) WEC. In these studies,
the effect of parametric resonance was detrimental to the
WEC performance, reducing the power capture as energy
was parametrically transferred from the primary mode of
motion into other modes.

However, unlike most other offshore applications, the large
amplitude motions caused by parametric resonance could
also be considered as beneficial for certain types of WECs
designed to extract energy from these modes. Olvera et al.
(2001) first proposes utilising parametric resonance, for the
case of an OWC, whereby the parametric excitation caused
by varying the volume of the OWC chamber is investigated
(Olvera et al. (2007)). Orazov (2011) and Diamond et al.
(2015) propose a class of WEC that utilises parametric
resonance by a mass-modulation scheme, whereby the
mass of a WEC element is varied in time through control
that either varied the added mass or takes on water. In
addition to stabilisation, Galeazzi and Pettersen (2012)
outlines using control to induce parametric resonance in
floating bodies, citing wave energy as one area where this
application may be desirable. This topic was also recently
debated at the 2017 Maynooth Wave Energy Workshop,
during an open forum discussion session (Clement (2017)).
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Parametric resonance may therefore be considered either
detrimental or beneficial for different types of WECs, and
control systems may need to be designed to either mitigate
or induce this effect.

3. WEC FORCES AND CONTROL

The forces on the WEC comprise: the force from the fluid,
the force from the mooring system and the force from the
PTO (in addition to gravity). The modelling of each of
these forces and their role in the parametric resonance of
a WEC is discussed in this presentation.

3.1 Fluid force

A range of methods have been developed to model the
fluid-structure interaction, details of which can be found in
Folley (2016). This presentation discusses the traditional
linear hydrodynamic modelling techniques, classically used
due to computational restrictions in solving the full nonlin-
ear Navier-Stokes set of equations, but which are unable to
capture the nonlinear phemonena of parametric resonance.
Modifyig these linear modeling techniques to be cast into
the form of the classic Mathieu-Hill equation for studying
parametric resonance is then discussed. Next, nonlinear
potential flow methods are discussed and example results
from Giorgi and Ringwood (2018) presented. The role of
viscous damping is then discussed, along with methods to
model this effect. Finally, the high-fidelity / computation-
ally expensive approaches offered by CFD are explored.

3.2 Mooring force

The role in which the mooring system can serve in either
inducing or mitigating parametric resonance, and meth-
ods to model these mooring effects, is discussed in this
presentation. For example, mooring forces can introduce
cross-coupling between the heave and pitch/roll modes
of motion, depending on where the mooring line(s) is
attached to the WEC. Also, drag forces on the mooring
lines can present a large source of energy dissipation from
the WEC. These and other effects are discussed in detail,
drawing upon the indepth review of the mathematical
modelling of mooring systems for WECs given in Davidson
and Ringwood (2017).

3.3 PTO force

The PTO system converts the mechanical energy in the
WEC into other forms of energy (electric, hydraulic,
etc.) via the PTO force. The PTO force can act in a
chosen degree of freedom with a specified amplitude and is
therefore a useful control input. The role in which the PTO
can be used to control parametric resonance in a WEC
is explored in this presentation, considering traditional
energy maximising control methods for WECs Ringwood
et al. (2014), as well as other methods such as nonlinear
energy sinks Vakakis et al. (2008).

4. CONCLUSION

A range of mathematical models, spanning the ’model
fidelity-computational requirement’ plane, are available

for the analysis and control of parametric resonance in
WECs. Low fidelity models are useful for quick analyses
of the stability properties, where as higher fidelity, more
computationally heavy, models are useful for evaluation
purposes or system identification of lower fidelity models.
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1. BACKGROUND

Thermal energy storage (TES) implemented in Concentrated 

Solar Power (CSP) addresses the issue of time mismatch 

between energy demand and supply. With TES, CSP plants 

can be operated flexibly to ensure power supply matches 

demand, maximising revenue. 

Direct two-tank TES with a molten eutectic mixture of 

NaNO3 and KNO3 is the currently dominant commercial 

choice in CSP. However, chemical stability issues limit 

operating temperatures which in turn limit the thermal 

conversion efficiency of the CSP plant’s power cycle. It is 

therefore desirable to explore alternative storage/transport 

media such as liquid sodium which are suitable for high 

temperature applications (Coventry et. al. 2015). 

In this work, we present a novel TES system involving a 

sodium heat pipe in direct contact with NaCl PCM. This 

combination is appealing due to high storage temperatures, 

low receiver losses and the potentially minimised cost of the 

storage subsystem. 

2. INTRODUCTION

NaCl has a low cost and high melting point of around 1073K, 

which is also similar to the saturation temperature of sodium 

heat transfer fluid (HTF) at slightly sub-atmospheric 

pressures. 

A dynamic system model of the HTF-PCM storage within a 

CSP system was implemented in OpenModelica evaluate key 

dynamic aspects of the system such as the temperature 

response of the PCM whilst heat is added/removed from the 

storage vessel, and movement of liquid sodium between the 

receiver and storage trays. Several design parameters which 

include PCM container dimensions, quantities of PCM and 

HTF material, and charging/discharging rates could then be 

optimised for maximum exergetic efficiency, and in future, 

minimum levelised cost of electricity (LCOE). 

Figure 1: Left: Conceptual design of the TES subsystem. Right: Equivalent 

model used in simulation. 

3. DESIGN CONCEPT

A simplified model of the HTF-PCM configuration includes 

a storage vessel containing saturated Na liquid-vapour at a 

temperature TNa in contact with the top surface of the NaCl 

contained in trays (Figure 1). Heat is delivered to the 

isochoric vessel via a sodium boiler receiver at TNa, which 

operates for 6 hours a day and is shut down for the remaining 

18 hours. In the 18 hours, heat is discharged from the storage 

vessel into a Carnot power cycle at TNa. 

During the charging process, Na vapour condenses on top of 

a pool of Na liquid. Excess condensing sodium overflows 

from the sides of the tray walls to the bottom of the vessel, 

where it can be pumped back for re-boiling in the receiver. 

During discharging, liquid sodium is boiled off the top of the 

PCM surface and must be replenished by pumping from the 

bottom of the vessel. 

4. MODEL ASSUMPTIONS

The sodium HTF was modelled as a single component, two-

phase mixture at temperature TNa. TNa is calculated at each 

time step using specific enthalpy and specific volume 

constraints and equations provided by Fink and Leibowitz 

(1995).  

The sodium receiver was modelled as an isothermal 

blackbody cavity receiver with fixed concentration ratio (CR) 

direct normal irradiance (DNI) for 6 hours each day. During 

the remaining 18 hours, the system the discharges at a rate 

�� output which is set to 1/3 of �� input or until the total energy 

stored by the vessel returned to zero. 

During charging, the heat transfer process between HTF and 

PCM was assumed to be conduction-dominated due to the 

low Prandtl number of liquid metals, and thus modelled via 

an extra thermal resistance term. During discharging, the 

effective thermal resistance of the liquid Na layer was 

assumed to be zero due to the large heat transfer coefficient 

associated with pool boiling. The temperature gradient within 

the liquid Na pool is assumed to be small enough such that 

the effect on the two-phase Na HTF model is negligible.  

Heat transfer within the PCM was modelled using a 

numerical scheme involving 1D finite-difference, enthalpy 

formulation with mushy node idealisation (Sharma et. al. 

2009; Dutil et. al. 2011). This numerical scheme was 

described to have relatively simple implementation, with a 

single governing equation for both solid and liquid phases. 

All PCM trays were assumed to experience identical heat 

transfer, and as such, were represented using a single 

equivalent tray (Figure 1). 
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The numerical scheme was validated against an exact 

Neumann solution to the Stefan Problem (Alexiades & 

Solomon, 1993). The output of the numerical scheme with 

constant properties was observed to converge to the exact 

solution as the mesh resolution was increased. 

To simulate a real-world TES configuration, the temperature 

distribution within the PCM was determined at each time-

step using a enthalpy-temperature relationship; which was 

then used to determine temperature-dependent properties 

such as density ρ (kg/m
3
) and thermal conductivity k 

(W/m·K). Due to the high operating temperature of the 

system and the semi-transparent characteristic of liquid NaCl, 

the k values of effective radiative-conductive heat transfer 

(RCT) were used. 

5. EXERGY CALCULATIONS

To obtain a measure of round trip exergy efficiency, the rate 

of exergy into and out of the HTF-PCM control volume was 

calculated at each timestep with �� =	300 K as the reference 

temperature. The exergy destruction within the PCM 

(between the nodes) via conduction was also calculated to 

determine if exergy is destroyed mainly during charging or 

discharging. 

6. MODELICA IMPLEMENTATION

The set of ordinary differential equations with respect to time 

were solved using OpenModelica with the dassl solver with a 

tolerance of 1×10
-6

. 

Table 1. System design parameters 

Parameter Value 

Concentration Ratio 1000 

Receiver Area 5×10-3 m² 

Direct Normal Irradiance, ��	 1000 W/m² 

Initial volume of NaCl @ 300K 0.1 m³ 

Total vessel volume 10.1 m³ 

Mass of Na 30.0 kg 

Initial Temperature of all components 1050 K 

Wall 1.5 × LNaCl 

The NaCl PCM was assumed to have a uniform cross-

sectional area, 
���  and a depth ���� . A parametric study 

on the effect of ����  given constant initial volume was 

performed to investigate the effect of PCM dimensions on the 

exergetic performance of the overall storage subsystem. 

7. RESULTS

An exergy efficiency Xout/Xin of 91.9% was achieved using 

PCM of depth 0.02 m; this decreases to 86.4% at 0.10 m.  

At higher PCM depths, a larger temperature difference is 

required to sustain the heat flux from the HTF to the PCM 

due to increasing thermal resistance between the HTF and the 

PCM’s melting front. This causes the temperature of the HTF 

to increase rapidly as heat is added to the system during the 

charging phase. This leads to increased radiative losses at the 

receiver and large temperature gradients within the PCM. The 

large temperature gradients lead to high exergy destruction 

rates within the PCM. 

A direct consequence of temperature variation in the two-

phase equilibrium sodium is the variation in pressure within 

the storage vessel. Minimising the maximum pressure and 

pressure variation of the HTF would be advantageous in 

reducing material costs of the storage vessel and avoiding 

material fatigue of its components.   

8. CONCLUSION AND FURTHER WORK

The depth of the PCM has a significant effect on the daily 

temperature and pressure variations of the HTF, which in turn 

affect exergy efficiency of the CSP system. This is consistent 

with the fact that heat transfer between the HTF and PCM is 

limited by the heat conduction within the PCM.  

The benefit of using thin trays of PCM would be 

counteracted by the increased material costs needed to 

fabricate the trays. As such, a cost vs. performance 

optimisation would allow the best design to be determined. 

Further work would involve an annual performance 

simulation of a complete CSP plant which utilizes the 

sodium/salt PCM storage concept. Parameters such as PCM 

depth, ratio of HTF to PCM and different control strategies 

would be optimized for minimum LCOE. 
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1. INTRODUCTION

Metabolic modeling has proved to be a very powerful tool
to get a better insight into the metabolism of an organism.
This approach has gained accuracy in the last decades, and
turns out to be particularly efficient to improve production
of target molecules, by understanding biological processes
that influence metabolism. In particular, it allows to assess
the main fluxes throughout a metabolic network (Baroukh
et al., 2014; Nazaret and Mazat, 2008). But resulting
models are of high dimension and difficult to use for control
purpose.

For example, metabolic modeling has clarified produc-
tion of triacylglycerols from microalgae and carbohydrates
from cyanobacteria (Baroukh et al., 2015). Both com-
pounds can then be turned into biofuel (biodiesel and
bioethanol, respectively) with expected reduced environ-
mental impacts (Lardon et al., 2009).

Metabolisms of microalgae and cyanobacteria are driven
by the solar flux which supports fixation of CO2. Pe-
riodic fluctuation of light induces instationarity of their
metabolisms, with accumulation of metabolites (especially
lipids and carbohydrates). Therefore, such metabolisms
are never at steady state.

However, most of the approaches dedicated to metabolism
analysis assume balanced growth, i.e. Steady State As-
sumption (SSA), which leads to rough approximations. For
instance, Flux Balance Analysis (FBA) (Orth et al., 2010)
or Macroscopic Bioreaction Models (MBM) (Provost et al.,
2006) are based on linear algebra to solve the equation
M ·V = 0, where M is the stoichiometric matrix and V is
the vector of intracellular reaction rates.

Some approaches have attempted to introduce dynamics,
for example, assuming that cell optimizes at each time in-
stant an objective criterion using Dynamical Flux Balance
Analysis (DFBA) (Mahadevan et al., 2002) or considering
external conditions that might change continuously in a
hybrid system, as proposed in Kaplan et al. (2009). But
all of them address specific processes and a general math-
ematical framework has never been established.

? Claudia López Zazueta was supported by the National Council of
Science and Technology of Mexico through the program conacyt-
secretaŕıa de enerǵıa-sustentabilidad energética 2015.

Furthermore, metabolic models are of high dimension,
which makes their mathematical analysis and parameter
identification complex. Identifying conditions to maximize
productivity by a rigorous mathematical analysis is gener-
ally not possible.

Here we propose a method to reduce the dimension of
a dynamical metabolic system, which is appropriate to
derive model based control strategies. Contrary to nearly
all existing works, the idea is to keep some dynamical
components of the model, that are necessary especially
when dealing with microalgae and cyanobacteria.

A first attempt in this direction was carried out with the
DRUM method (Baroukh et al., 2014). This modeling
approach considers subnetworks in Quasi Steady State
(QSS), which are interconnected by metabolites that can
accumulate. Then, Elementary Flux Modes (EFM) are
computed in each subnetwork to reduce them using Quasi
Steady State Assumption (QSSA). As result, the dynamics
of accumulative metabolites form a reduced system of
Ordinary Differential Equations (ODE).

DRUM approach has proven to provide sound results,
with very efficient representation of accumulation of lipids
and carbohydrates in microalgae submitted to light/dark
cycles. However, as almost all methods developed for
metabolic analysis, it relies on a series of assumptions
whose mathematical bases have not been rigorously es-
tablished. Beyond QSSA, which assumes “fast” and
“slow” parts on the metabolism without delimiting them,
these approaches also neglect intracellular dilution due to
growth.

2. RESULTS AND DISCUSSION

The main objective of our work is to provide mathematical
foundations for the reduction of metabolic networks to low
dimensional dynamical models. In a first stage, we simplify
the problem assuming linear kinetics in a metabolic net-
work. For reducing the system accurately, we propose a
dynamical approach that relies on time scale separation
and the QSSA.

The reduction of a linear kinetic model, with a continuous
input and a constant factor of dilution caused by growth,
is analyzed through this method. The system is composed
of subnetworks of fast reactions, which are connected by
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The proof is omitted due to the limited space. However, it
can easily be checked that the sum of the local volume con-
straint upper bounds equals the global volume constraint
upper bound, i.e.

∑
l∈L Vl = V .

4. GAME THEORY APPROACH

To determine the failure distribution pl, we consider the
particular case wherein some opponents try to identify
the weakest point of the structure. In such worst case
scenarios, game theory can be employed to determine the
failure distribution while guaranteeing robustness (Holm-
berg et al., 2017).

The situation can be compared to a penalty shoot-out
in a soccer game. There are two players, a kicker and a
keeper. The kicker aims at the areas of the goal where it
is difficult for the keeper to reach, i.e. the extreme left or
right. However, the keeper tries to predict the best action
of the kicker and he concludes that the kicker will aim at
the goal extremities, which is not convenient for the kicker
as his strategy is leaked. As a result, the options of both
players converge towards some compromising points.

Similarly, design problems considering unexpected failure
can be interpreted as a game between a “failure” player
and a “structure” player. The failure player tries to choose
the subdomain l that maximizes the structural damage
while the structure player tries to limit the amount of
material within the targeted areas. In game theory, this
is a standard two player zero-sum game. The utility of the
failure player is the compliance of the structure after fail-
ure and the utility of the structure player is the opposite.
The resulting failure distribution pl can be computed as
a mixed Nash equilibrium of the game. The mixed Nash
equilibra of two player games can be computed using the
Lemke-Hawson algorithm (Papadimitriou, 2007).

5. EXAMPLE AND CONCLUSION

The design problem described in Fig. 1 is solved to
exemplify the proposed method. The available amount
of material is set to 50% of the design domain which is
divided into L = 8 ∗ 16 = 128 subdomains. It is assumed
that the subdomain loses all its material if a failure occurs.

The failure distribution pl is first computed from the game
theory problem. To reduce computation time, the number
of subdomains is reduced to eight. The players have six
options since the two subdomains where the load is applied
need material to withstand the load. The mixed Nash
equilibrium computed by Lemke-Hawson algorithm is not
uniform as illustrated in Fig. 2, which means that specific
subdomains are targeted by the failure player. The local
volume constraint Vl is then computed based on (4). The
optimized solution is illustrated in Fig. 3.

This first example illustrates the validity of the proposed
approach. Comparing to a standard optimization, the
compliance is higher, meaning that the structure is less stiff
but it is however more robust against unexpected failure.
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1. INTRODUCTION

Enforcing local volume constraints in the design problem
turns out to be an efficient approach to increase structural
robustness against uncertainties (Wu et al., 2017). By
constraining locally the available amount of material, the
optimized design exhibits infill patterns which reflects a
more uniform and periodic distribution of the material.
This method can notably produce results exhibiting bone-
like structures which are known to be robust against load
uncertainty. Compared to a deterministic approach, the
robustness is often achieved at the cost of reducing the
component stiffness (Tromme et al., 2017). However, the
justification of using local volume constraints has not
been well discussed in the context of robust topology
optimization. Moreover, no standard methodology exists
to determine the local volume constraint upper bound.

This study aims to explain the relationship between ro-
bustness and local volume constraints and to propose a
method defining the upper bound of local volume con-
straints for a given failure distribution. To compute the
failure probability distribution, a game theory approach is
adopted. A standard design problem is solved to illustrate
the developed method.

2. ROBUST TOPOLOGY OPTIMIZATION

Standard topology optimization problem is usually for-
mulated as a compliance minimization problem (stiff-
ness maximization) subject to a global volume constraint.
Mathematically, the formulation reads

minimize
φ

f0 = fTd

subject to K (φ)d = f ,∑
e∈Ω

ρe (φ) ve ≤ V,

− 1 ≤ φi ≤ 1, ∀i ∈ Ω,

(1)

where Ω is the design domain, K the stiffness matrix,
d the displacement vector and f the force vector. The
element density and the element volume are represented
respectively by ρe and ve. The vector φ gathers the design
variables.

Topology optimization problems are known to be ill-posed
and prone to checkerboard issues and mesh dependency. In
this paper, the Helmholtz PDE based filter is adopted and
introduces the relationship between the design variable φ

and the element density ρ (Kawamoto et al., 2011). To
mathematically enforce a 0-1 material distribution, the
SIMP interpolation scheme is considered (Bendsøe, 1989;
Rozvany et al., 1992).

Ensuring robustness via local volume constraints is straight-
forward as it simply adds a set of constraints to the design
problem (1). Those local constraints are expressed as∑

k∈Ωl

ρkvk ≤ Vl, for l ∈ L = {1 . . . L}, (2)

where L is the number of design domain subdivisions and
Vl the upper bound of the subdomain l. The subdivision
verifies ⋃

l∈L

Ωl = Ω and Ωi ∩ Ωj = 0, for i 6= j. (3)

3. UNEXPECTED FAILURE

The present study focuses on design problems considering
unexpected failures. It is assumed that failure arises from
an unexpected load other than f and that the probability
distribution of the failure does not depend on the structure
nor on the load vector. This situation can occur due to
defects in production, accidental impacts during trans-
portation or aged deterioration for instance.

The failure distribution is represented by pl (l ∈ L) with∑
l∈L pl = 1. If the structure undergoes a failure in the

subdomain l, the stiffness drops in that region. Therefore,
if an algorithm could predict that the subdomain l will
have a failure, it would be advantageous to remove mate-
rial in l and to redistribute it in other subdomains. Hence,
the larger failure probability pl is expected, the smaller
amount of material, i.e. the smaller upper bound Vl, should
be applied.

The problem is to compute the upper bound Vl based on
the given probability distribution pl. For this purpose,
we assume a design process that reallocates uniformly
materials in other subdomains. The following lemma sum-
marizes the main achievement of this research as it gives a
relationship between the upper bound of the local volume
constraints and the probability distribution.

Lemma 1. If the failure distribution pl is given, the upper
bound of the local volume constraint Vl can be computed
as

Vl =
1− pl
L− 1

V, for l ∈ L. (4)
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The proof is omitted due to the limited space. However, it
can easily be checked that the sum of the local volume con-
straint upper bounds equals the global volume constraint
upper bound, i.e.

∑
l∈L Vl = V .

4. GAME THEORY APPROACH

To determine the failure distribution pl, we consider the
particular case wherein some opponents try to identify
the weakest point of the structure. In such worst case
scenarios, game theory can be employed to determine the
failure distribution while guaranteeing robustness (Holm-
berg et al., 2017).

The situation can be compared to a penalty shoot-out
in a soccer game. There are two players, a kicker and a
keeper. The kicker aims at the areas of the goal where it
is difficult for the keeper to reach, i.e. the extreme left or
right. However, the keeper tries to predict the best action
of the kicker and he concludes that the kicker will aim at
the goal extremities, which is not convenient for the kicker
as his strategy is leaked. As a result, the options of both
players converge towards some compromising points.

Similarly, design problems considering unexpected failure
can be interpreted as a game between a “failure” player
and a “structure” player. The failure player tries to choose
the subdomain l that maximizes the structural damage
while the structure player tries to limit the amount of
material within the targeted areas. In game theory, this
is a standard two player zero-sum game. The utility of the
failure player is the compliance of the structure after fail-
ure and the utility of the structure player is the opposite.
The resulting failure distribution pl can be computed as
a mixed Nash equilibrium of the game. The mixed Nash
equilibra of two player games can be computed using the
Lemke-Hawson algorithm (Papadimitriou, 2007).

5. EXAMPLE AND CONCLUSION

The design problem described in Fig. 1 is solved to
exemplify the proposed method. The available amount
of material is set to 50% of the design domain which is
divided into L = 8 ∗ 16 = 128 subdomains. It is assumed
that the subdomain loses all its material if a failure occurs.

The failure distribution pl is first computed from the game
theory problem. To reduce computation time, the number
of subdomains is reduced to eight. The players have six
options since the two subdomains where the load is applied
need material to withstand the load. The mixed Nash
equilibrium computed by Lemke-Hawson algorithm is not
uniform as illustrated in Fig. 2, which means that specific
subdomains are targeted by the failure player. The local
volume constraint Vl is then computed based on (4). The
optimized solution is illustrated in Fig. 3.

This first example illustrates the validity of the proposed
approach. Comparing to a standard optimization, the
compliance is higher, meaning that the structure is less stiff
but it is however more robust against unexpected failure.
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1. INTRODUCTION

The continuous increase in sedentary work over the last 

decades has resulted in a higher risk of hypertension, 

overweight, obesity, diabetes and musculoskeletal problems. 

Furthermore prolonged seating affects the thermal comfort 

requirements commonly leading to unhealthy workplace 

temperatures and conditions (Garcia Souto et al, 2013; 

Michael et al, 2017). 

Traditionally sitting related research has been an area of 

interest for patients with impaired mobility (Dabnichki & 

Taktak, 1998). More recently a variety of interventions have 

been proposed and developed ranging from activity programs 

aiming to reduce sedentary time  to posture recognition tools 

prompting the user to avoid ergonomically inappropriate 

postures (Schwartz et al. 2013). To date most posture 

recognition models have predominantly relied on video based 

approaches that are controversial for implementation during 

work and travel..  

These models play an essential role in bridging the gap 

between movement/posture data and static and dynamic 

analysis of forces occurring.  However, all these models 

require different number of inputs and are not easily applied 

in practical situations (Dabnichki et al, 1998). 

In this work we demonstrate how through model sensitivity 

analysis we reduce the required inputs, the sampling 

frequency and inherent complexity of the anthropometric 

model to develop a simple method of posture recognition. We 

do not discuss the developed classification that is compliant 

with ergonomic practice as it is outside the scope of this 

work. 

2. MODEL BUILDING AND COMPLEXITY REDUCTION

The model was built through the use of biomechanical 

analysis to observe and classify postures using an imaged 

based system with integrated GRF data collection. The 

purpose of this process was to reduce the complexity of the 

model and ultimately eliminate the use of image data. We 

describe the steps in this process below. 

2.1 Combined image and force data collection and analysis 

In order to gain better insight into the kinetic trace of the 

postures considered we mounted an office chair of a force 

plate and conducted integrated data collection with on-line 

force analysis. 

Fig.1. Data collection set-up for automated posture analysis. 

which in the simplified model form is 

where we use the standard notation for the ground reaction 

force, centre of mass and centre of pressure. The wi indicates 

the respective weights of the 3 modified segments and f is the 

generalkised friction force and df is the distance of its point of 

application from the origin of the reference system  

2.2 Detailed force analysis 

In the second stage of the process we looked into the 

influence of the position and movement of different parts on 

the body on the balace of forces and moments (sensitivity 

analysis) produced some surprising outcomes for us and 

luckily they were very pleasing.  
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2.3 Analysis of body balance 

Having achieved model reduction we needed to find out 

whther a posture described this way complies with the two 

fundamental mechanical principles. i.e. the balance of forces 

and the balance of moments. Hence it was essential to 

establish where the imaginary centre of mass should be 

pllaced. Here we need to point out that the analysis of this 

assumes 3D coordinates as the medial-lateral movement is 

considred as adaptive parameter. 

Fig.2. Simplified anthropometric model. 

of the centre of mass of the Upper Body Segment (with a 

small perturbation parameter). Similarly the location of the 

centre of mass of the Lower Body was assumed to coincide 

with the location of the centre of mass of the Calves as their 

mass is an order higher than that of the feet, although there is 

a slight adjustment made in the sagittal plane.  

This reduction means that to build a model for an individual, 

one needs just height and weight. Accuracy would improve if 

gender is indicated but it is not a firm requirement. 

Furthermore depending on the implementation there is a 

built-in procedure for weight verification so strictly speaking 

weight input is also optional. 

3. MODEL OVERVIEW AND IMPLEMENTATION

The model described in the previous was tested in an on-line 

automated system in several stages. The first stage was to test 

it on random samples of the pre-collected data and compare 

to visual classification already tagged. Again using the 

existing data an “inverse” simulation was then run to obtain 

the CoP position based on the visual input from the modified 

body segments. The reliability criterion was the position of 

the centre of pressure and whether it is identifiable with the 

assumed posture. 

Fig. 3. Position of the centre of pressure on the force plate. 

The results yielded for the posture classification proved to be 

clear and allow unambiguous classification in about 85% of 

the cases. As already discussed the dominant effect is in the 

sagittal plane and it is used as the fastest indicator. The  

4. SYSTEM CONSTRAINTS AND FURTHER

DEVELOPMENT 

The results that the current work produced are pleasing as 

with a small degree of personalisation the accuracy exceeds 

90%. However, the algorithm heavily relies on the accuracy 

of the force data measurement of all 12 force components 

(and this number cannot be reduced without compromising 

the COP estimate which in turn will drastically reduce the 

success rate in posture recognition. From the very beginning 

we have been well aware that the use of a force plate in 

everyday environment is neither practical nor likely.  

The reduced reliability is likely to prompt us to use more 

elaborate artificial intelligence based methods combined with 

system self-calibration. The system is likely to only use the 

model in the initial assessment and then use a learning 

algorithm to adapt to the individual behaviour. Still the 

relatively low frequency of action provides good analytical 

opportunities to reduce the guessing element in the process of 

classification. We are also looked into possibility of a chair 

mounted force plate equivalent to measure the total force.  

On the theoretical front we are looking into the topological 

characterisation of the areas of uncertainty for the key points 

allocation to reduce the grey areas of uncertain classification. 

This is particularly important when a new subject is 

introduced. 

REFERENCES 

Dabnichki, P. and Taktak D. (1998) Pressure variation under 

the ischial tuberosity during a push cycle, Medical 

Enineering & Physics, 20(4), 242-56. 

Dabnichki, P., Lauder, M., Aritan, S., 1997 Accuracy 

evaluation of an on-line kinematic system via dynamic 

tests, Journal of Medical Engineering & Technology, 

21(2), 53-66,  

Garcia-Souto, M. and Dabnichki, P., 2016, Core and local 

skin temperature: 3-24 months old toddlers and 

comparison to adults. Building and Environment, 104, 

286-295 

Garcia-Souto M. and Dabnichki P. (2013) Skin temperature 

distribution and thermoregulatory response during 

prolonged seating. Building and Environment, 69, 14–21 

Michael K, Garcia-Souto MDP and Dabnichki, P. (2017) An 

investigation of the suitability of Artificial Neural 

Networks for the prediction of core and local skin 

temperatures when trained with a large and gender-

balanced database. Appl Soft Comp, 50, 327-343 

Schwartz, B. (2015) Cognitive and biomechanical effects of 

postural changes in office environments. Proceeding of 

the 61th Spring-Congress on the Society for Ergonomics 

and Work Science, Karlsruhe, Germany 

30

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



Design of Optimal RF Pulses for NMR as a
Discrete-Valued Control Problem ?

Christian Clason ∗ Carla Tameling ∗∗ Benedikt Wirth ∗∗∗

∗ Faculty of Mathematics, Universität Duisburg-Essen, 45117 Essen,
Germany (e-mail: christian.clason@uni-due.de)

∗∗ Institute for Mathematical Stochastics, Universität Göttingen,
Goldschmidtstr. 7, 37077 Göttingen, Germany (e-mail:

carla.tameling@mathematik.uni-goettingen.de)
∗∗∗Applied Mathematics, Universität Münster, Einsteinstr. 62, 48149

Münster, Germany (e-mail: benedikt.wirth@uni-muenster.de)

Keywords: multibang control, convex relaxation, semismooth Newton, Bloch equation, NMR

1. INTRODUCTION

Designing optimal radiofrequency (RF) pulses for nuclear
magnetic resonance (NMR) imaging consists of driving a
collection of spin systems using external electromagnetic
fields of minimal energy to a desired spin state. However,
in some cases the hardware only allows a discrete set of
pulse phases and amplitudes. In contrast to methods based
on quantization (Dridi et al., 2015), we aim to compute
such pulses by solving a suitable optimal control problem.
A standard model for NMR is given by the Bloch equation
in a rotating reference frame without relaxation, i.e.,

d
dtM

(ω)(t) = M(ω)(t)×B(ω)(t) , M(ω)(0) = M0,

which describes the temporally evolving magnetization
M(ω) ∈ R3 of an ensemble of spins rotating at the
same resonance offset frequency ω (called isochromat),
starting from a given equilibrium magnetization M0 ∈ R3

(e.g., aligned to a strong external field). The time-varying
effective magnetic field B(ω)(t) is of the form

B(ω)(t) = (ωx(t), ωy(t), ω)T ,
where u(t) := (ωx(t), ωy(t)) ∈ R2 can be controlled. The
aim is to achieve a magnetization M(ω)(T ) = M(ω)

d within
the time interval Ω = [0, T ] for a list of offset frequencies
ω1, . . . , ωJ using control values u(t) from a discrete set

M =
{

( 0
0 ) ,
(
ω0 cos θ1
ω0 sin θ1

)
, . . . ,

(
ω0 cos θM

ω0 sin θM

)}
for a fixed amplitude ω0 > 0 and M > 2 equi-distributed
phases 0 ≤ θ1 < . . . < θM < 2π.
Introducing the control space U := L2(0, T ;R2), the control-
to-state operator

S : U → (R3)J , u 7→
[
M(ω1)(T ), . . . ,M(ωJ )(T )

]
,

? CC is supported by the German Science Fund (DFG) under
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Research Training Group 2088 Project A1. BW’s research was
supported by the Alfried Krupp Prize for Young University Teachers
awarded by the Alfried Krupp von Bohlen und Halbach-Stiftung. The
work was also supported by the Deutsche Forschungsgemeinschaft
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University of Münster, Germany.

and the target vector z := [M(ω1)
d , . . . ,M(ωJ )

d ]T ∈ (R3)J ,
this problem can be formulated as an optimal control
problem

(1) min
u∈U

1
2‖S(u)− z‖22 +

∫ T

0
g(u(t)) dt.

Here, g : R2 → [0,∞] is a vector-valued version of the
multi-bang penalty from Clason and Kunisch (2014, 2016)
that can be motivated as the convex hull of the non-convex
penalty α

2 |·|
2
2+δM, where δM denotes the indicator function

in the sense of convex analysis, and can thus be expected
to promote controls with values only in M. The main
advantage of this formulation is that it leads to a convex
optimization problem that can be efficiently solved using a
semismooth Newton method (Clason et al., 2016).

2. CONVEX ANALYSIS FRAMEWORK

Standard arguments from convex analysis and on the
continuity and differentiability of S yield the following
results.
Theorem 2.1. There exists a solution ū ∈ U to (1)
Theorem 2.2. Let ū ∈ U be a local minimizer of (1). Then
there exists a p̄ ∈ U satisfying

(2)
{
−p̄ = S′(ū)∗(S(ū)− z) =: F ′(ū),
ū(t) ∈ ∂g∗(p̄(t)) a.e. t ∈ [0, T ].

Here, S′(u)∗ denotes the adjoint of the Fréchet derivative
of S, which can be computed as the solution of the adjoint
Bloch equation, and ∂g∗ denotes the convex subdifferential
of the Fenchel conjugate of g, which will be specified below.
For the numerical solution, we also require the Moreau–
Yosida regularization

(3)
{
−pγ = S′(uγ)∗(S(uγ)− z) = F ′(uγ),
uγ(t) = hγ(pγ(t)) a.e. t ∈ [0, 1],

where
hγ := (∂g∗)γ = 1

γ
(Id−proxγg∗)

and proxγg∗ = (Id−γ∂g∗)−1 denotes the (single-valued
and Lipschitz-continuous) proximal mapping of g∗.
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3. MULTIBANG PENALTY

Letting ūi, i = 0, . . . ,M , denote the admissible control
values inM (with ū0 = 0), we obtain from the definition
of the Fenchel conjugate and the maximum rule for the
subdifferential by straightforward if tedious computation
the following explicit characterization for q := p(t):

∂g∗(q) =
{
{ūi} q ∈ Qi,
co{ūi1 , . . . , ūik} q ∈ Qi1...ik .

Together with (2) this yields that apart from singular cases
corresponding to the second line, the optimal control ū will
indeed take on values from the admissible set. The sets Qi
can be characterized using polar coordinates; here we only
illustrate their distribution in Fig. 1a.
Similarly, we obtain for the Moreau–Yosida regularization

hγ(q) =



0 q ∈ Qγ0 ,
ūi q ∈ Qγi ,(
〈q,ūi〉
γω2

0
− α

2γ

)
ūi q ∈ Qγ0,i,

ūi+ūi+1
2 + 〈q,ūi−ūi+1〉(ūi−ūi+1)

γ|ūi−ūi+1|22
q ∈ Qγi,i+1,

q
γ −

α
γ

(
ω0

|ūi+ūi+1|2

)2
(ūi + ūi+1) q ∈ Qγ0,i,i+1,

with the subdomains Qγi illustrated in Fig. 1b.
q2

q1
Q0

Q1
Q2

Q3

Q4
Q5

Q6

Q01

Q12

Q012
Q02

Q23

Q023

Q03

Q34
Q034

Q04

Q45

Q045
Q05

Q56

Q056

Q06

Q61
Q061

(a) ∂g∗

q2

q1Qγ
0

Qγ
1

Qγ01

Qγ12

Qγ012

Qγ
2

Qγ02

Qγ23

Qγ023

Qγ
3 Qγ03

Qγ34

Qγ034

Qγ
4

Qγ04

Qγ45

Qγ045

Qγ
5

Qγ05
Qγ56

Qγ056

Qγ
6

Qγ06

Qγ61
Qγ061
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Fig. 1. Subdomains for radially distributedM, M = 6

4. NUMERICAL SOLUTION

Introducing the superposition operator Hγ : U → U via
[Hγ(p)](t) = hγ(p(t)), we can write (3) in reduced form as

uγ −Hγ(F ′(uγ)) = 0.
Since hγ is Lipschitz continuous and piecewise differentiable
and the range of S′(u)∗ ⊂ L∞(0, T ;R2), this is a Newton-
differentiable equation. Taking

DNhγ(q) =


0 q ∈ Qγi ,
ūiū

T
i 1

γω2
0

q ∈ Qγ0,i,
(ūi−ūi+1)(ūi−ūi+1)T

γ|ūi−ūi+1|22
q ∈ Qγi,i+1,

1
γ Id q ∈ Qγ0,i,i+1,

the corresponding superposition operator DNHγ(p) leads
to a superlinearly convergent semismooth Newton method(

Id−DNHγ(F ′(uk))F ′′(uk)
)
δu = −uk +Hγ(F ′(uk)),

which can be realized using a matrix-free Krylov method
such as GMRES (where F ′′(u) can be computed using the
solution of two linearized (adjoint) Bloch equations).

5. NUMERICAL EXAMPLES

Figure 2 illustrates the above approach for the simultaneous
control of J = 4 isochromats with from M0 = (0, 0, 1)T

to M(ωj)
d = (0, 0, 1) for j = 3, M0 else, and M = 6

admissible values with equidistant phases (marked with
dashed lines in Fig. 2a), where the implementation of the
discrete (linearized) Bloch and adjoint equations is taken
from Aigner et al. (2015). For more details and examples,
see Clason et al. (2016).

0
2

4
6

8

−1

0

1
−1

0

1

tu1

u
2

(a) control ũ(t)
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(b) state M(ωj )
u (t)

Fig. 2. Optimal control and state for M = 6, J = 4
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1. INTRODUCTION

The effects of globalization, such as the development of
economies, free movement of capital, whether the increase
in competitiveness is forcing companies to adjust strategy
to rapidly changing environmental conditions. One of the
ways to achieve market success and maintain a competitive
position is cooperating with others enterprises.

In this work, we are concentrated on an industrial group
with vertical cooperation in which, legally and econom-
ically independent companies of different stages of the
technological chain are working together in the direction
of production cost reduction, setting transfer price for
goods and services, and impact on the final consumer (see
Fernandez-Olmos et al. (2016)).

The goal of the work is to define of those conditions of co-
operation of the group members which could ensure their
stable functioning and economic development and could
maximize economic efficiency on the long-term planning
horizon under uncertain behavior of consumers.

2. OPTIMAL COOPERATION PROBLEM

Let us consider some industrial group on a cooperation
interval [t0, t1] , where t0 and t1 are the initial and final
moments of cooperation (t0 ≤ t1, [t0, t1] ⊂ R+). Let
j ∈ {1, 2, ...,K}. This structure includes the vertical
cooperation of k members. Each member acquires the
necessary resources and has production facilities. The
manufacturing activity of the group is considered on
product and consumer markets. We assume that the
production does not bring the loss to jth member of the
group, j ∈ {1, 2, ...,K}, when its selling price covers the
manufacturing costs as well as that the overall production
does not exaggerate the market demand.

Each member of the group tries to improve own economic
situation and to increase profit. Analyzing the internal
and external characteristics, we have noticed the following.
There exist some parameters, for example, the products
internal transfer prices, which present the antagonistic
interests of the members of the group, and therefore these
values have an effect not only on the profit of each group’s
member but also on the decision of cooperation and

? This paper was supported by Ministry of Science and High Educa-
tion of Poland, project 04.0.09.00/2.01.01.02.0015 MNSC.ZKEZ.17.

economic efficiency on the planning horizon. Moreover,
the uncertainty of market characteristics constrains the
economic activities of the group as well as of each its
member.

The problem of the maximizing of economic efficiency on
long-term planning horizon [t0, t1] can be formulated as
the task of the functional maximization with respect to
control variables u(t) (xj ∈ ε, u ∈ U, ε and U are some
spaces)

πj(t1) = max
u∈U

K∑
j=1

[Jj(xj(·), u(·))] (1)

s.t.
xj(t) = T(t, xj(t), u(t)) (2)

Ψ1
j (xj(t0), xj(t1)) ≤ 0 (3)

Ψ2
j (xj(t0), xj(t1)) = 0 (4)

gkj (t, xj(t)) ≤ 0, k = 1, 2, ..., `
(j)
1 (5)

φmj (t, u(t)) ≤ 0,m = 1, 2, ..., `
(j)
2 (6)

where T(t, xj(t), u(t)) is a differential operator of the
mathematical model describing the economic situation

xj(t) ∈ R of jth member of group, Ψ1
j : R×R→ Rn

(j)
1 and

Ψ2
j : R×R→ Rn

(j)
2 are the terminal constraints; g

(j)
k : R×

R → R`
(j)
1 are phase constraints; φ

(j)
m : R × Rr → R`

(j)
2 are

the control constraints; n
(j)
1 , n

(j)
2 , `

(j)
1 , `

(j)
2 , r ∈ N.

The solution of the optimal control problem (1) – (6)
depends on the model selection for each its expression.
Bochnacka and Filatova (2017) studied the case of the two-
enterprises group. The stochastic differential equation with
fractional Brownian motion was used as the mathematical
model describing the economic situation xj(t). Taking
into account the theoretical results proposed by Filatova
et al. (2010) the necessary optimality conditions were
formulated. Since the real economic situation is more
complex, the incorporation of the market uncertainty
would allow to check the reaction (a kind of sensitivity)
of the economic situation. For this purpose, we propose to
take into account the consumers behavior.

3. MODEL OF CONSUMER BEHAVIOR

Having in mind the external influence of the product
market, it is assumed that the value of total sales of the
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group during given period [t0, t1] depends on demand and,
by implication, on quantity of consumers willing to buy
products, on their behavior and decision.

Filatova et al. (2016) proposed the model of consumer
behavior, which can be implemented through the compo-
sition of individual choices over two alternative policies –
Rawlsian maximin and Harsanyian utilitarianism. Anal-
ysis of similar conceptual and mathematical models de-
scribing the social preferences pointed out the possibilities
of the consumer behavior dynamics’ description omitting
any specific analysis of decision-making mechanisms.

Here we suppose that the number of consumers willing to
buy the products of the group at some moment of time
t ∈ [t0, t1] is y(t) > 0, y(t) ∈ R+. The consumers are
subdivided into different classes according to the policy
of its members. Each consumer can choose (and change or
stay with his/her decision later) a situation that favors the
less well-off possibly in detriment of the most well-off (first
group, ”maximin”), or wants to maximize the average
distribution of wealth (second group, mean utilitarianism
or ”maximean”), or finally desires to maximize most well-
off, possibly to the detriment of the less well-off, especially
if it maximizes the general well-off (third group, which can
label ”maximax” and corresponds to some classical form
of unqualified utilitarianism). In this case, consumers can
be defined through:

y(t) = y(1)(t) + y(2)(t) + y(3)(t) (7)

where y(`)(t) ≥ 0, y(`)(t) ∈ R+, represents the cardinality
of `th group, ` = 1, 2, 3.

As one can see, there exist six possibilities for change.
Let the members of each group change their strategies
with six different intensities. These intensities depend
on social preference, risk aversion or other exogenous
factors such as culture, etc.). We denote these parameters
as γij , which corresponds to exchange between i and
j, i, j = 1, 2, 3. The passage of individuals from the
group to group usually occurs as a result of interpersonal
contacts among individuals or other factors which make
an individual change the preferences. This phenomenon
cannot be measured directly.

Taking into consideration the characteristics of the con-
sumers mentioned above, the dynamic model of consumer
behavior can be written as the system of ordinary differ-
ential equations:

dy(1)(t) = [−(γ21 − γ12)y(1)(t)y(2)(t) (8)

+γ23y
(3)(t)− γ32y(1)]dt, (9)

dy(2)(t) = [(γ21 − γ12)y(1)(t)y(2)(t) (10)

−(γ32 − γ23)y(2)(t)y(3)(t)]dt, (11)

dy(3)(t) = [(γ32 − γ23)y(2)(t)y(3)(t) (12)

−γ23y(3)(t) + γ32y
(1)(t)]dt, (13)

with y(`)(t0) = y
(`)
0 .

Associating with each class y(`)(t) some purchasing power

a
(`)
j , j = 1, 2, ...,K, the demand on the production can be

presented as some function

dj(t) = ξ(t,
3∑

`=1

a
(`)
j y(`)(t)), j = 1, 2, ...,K. (14)

Under these assumptions the formulation of the problem of
the maximizing of economic efficiency under conditions of
dynamic demand on production is the same as in previous
case, however one of groups of the phase constraints (5),
which take a form

xj(t)− dj(t) ≤ 0 ∀t ∈ [t0, t1] , j = 1, 2, ...,K. (15)

requires particular attention due to complex behavior near
the equilibrium points of (8).

4. CONCLUSIONS

An industrial group, consisting of two enterprises with
vertical cooperation, is considered. We assume that both
enterprises, having necessary production capacities, act on
the product markets once as the partners and once as
the independent actors. The main problem of this kind
of cooperation is to find the optimal conditions for the
production programs for both enterprises, or in other
words, it is necessary to find the solution of task (1) – (6)
under different conditions of the consumer’s behavior. The
possible way of the mathematical problem formulation, as
well as its relation to the optimal control problem, is the
essence of this work. The theoretical backgrounds for the
solution of the optimal cooperation production program
are developed using the Dubovitski-Milyutin method.

In the further stages of the research, issues related to
determining the determinants of vertical cooperation will
be introduced, which should contribute to the formulation
of more precise models of cooperating enterprises and their
optimal management.
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1. INTRODUCTION

The goal of this paper is to apply model reduction
techniques that preserve the Hamiltonian structure (see
e.g. Maboudi Afkham and Hesthaven (2016)) to a high-
dimensional, linear elasticity model. The Hamiltonian
structure of a linear elasticity model is presented and the
structure-preserving model reduction is introduced. Fur-
ther, two structure-preserving model reduction techniques
are compared to a technique that does not preserve the
Hamiltonian structure in a numerical experiment.

2. HIGH-DIMENSIONAL MODEL

2.1 Second-order formulation

The model for two-dimensional linear elasticity is derived
from a geometrically linear, small strain formulation. The
Lamé constants λL, µL ∈ R with µL > 0, 3λL+2µL > 0 are
used to describe the linear elastic material behavior. Addi-
tionally, nondimensionalization is applied. This results in
a dimensionless Lamé–Navier initial boundary value prob-
lem. Application of the Finite Element Method (FEM)
with a triangular grid and linear shape functions yields
the initial value problem of size n ∈ N which describes the
evolution of the unknown, parameter-dependent, displace-
ment field q : [t0, te]× P → Rn with

M
d2

dt2
q(t,µ) +K(µ)q(t,µ) = f(t), (1)

with the initial value conditions

q(t0,µ) = q0,
d

dt
q(t0,µ) = v0 (2)

where µ = [λL, µL]
T ∈ P are the parameters from the

parameter space P ⊂ R2, M ∈ Rn×n is the mass ma-
trix, K(µ) ∈ Rn×n is the parameter-dependent stiffness
matrix, f(t) is the force vector, q0 ∈ Rn is the initial dis-
placement, and v0 ∈ Rn is the initial velocity at the initial
time t0 ∈ R. The final time is denoted with te ∈ R. The
parameters µ are assumed fixed during a single simulation.
The parameter-dependence is only denoted if required in
the following which is why we abbreviate K = K(µ),
q(t) = q(t,µ).

2.2 Hamiltonian formulation

In order to derive a Hamiltonian formulation of the system,
the force vector f(t) = f has to be constant. The second-

order system (1) is rewritten in terms of a first-order
system with the linear momentum p(t) = M d

dtq(t) and

the state vector x(t) = [qT(t),pT(t)]
T

. The corresponding
Hamilton’s equation reads

d

dt
x(t) = J2n∇xH(x(t)) = J2n(Hx(t) + h), (3)

x(t0)) = x0 = [qT0 ,v
T
0 ]

T
(4)

with the definitions

J2n =

[
0n In
−In 0n

]
, H =

[
K 0n

0n M
-1

]
, h =

[
−f

0n×1

]
(5)

and the corresponding Hamiltonian function

H(x) = 1/2 xTHx+ xTh (6)

where 0n ∈ Rn×n is the matrix and 0n×1 ∈ Rn the vector
of all zeros and In ∈ Rn×n is the identity matrix.

An essential feature of the definition of Hamilton’s equa-
tion is that the Hamiltonian function is preserved along
the solution, i.e. d

dtH(x(t)) = 0, where x(t) is the solution
of the Hamiltonian system (3).

3. STRUCTURE-PRESERVING MODEL REDUCTION

3.1 Motivation

The size 2n of the system (3) is in general high which
is why the model is called high-dimensional model. Mul-
tiquery scenarios or real-time application require model
reduction techniques. The goal of the structure-preserving
model reduction is to derive a reduced system that pre-
serves the Hamiltonian structure of the system (3). To this
end, the full state vector x ∈ R2n is approximated with a
low-dimensional state x̂ ∈ R2k of size 2k where k ∈ N and
k � n. A reduced order basis (ROB) V ∈ R2n×2k is used
for the approximation

x(t) ≈ V x̂(t). (7)

The ROB is chosen to be symplectic matrix, i.e.

V TJ2nV = J2k. (8)

If the ROB is symplectic, the existence of its symplectic
inverse V + = JT2kV TJ2n ∈ R2k×2n with V +V = I2k is
guaranteed.

The approximation (7) is inserted into Hamilton’s equa-
tion (3) while the system is projected with W T = V +.
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This yields the low-dimensional initial value problem as
the reduced Hamiltonian’s equation

d

dt
x̂(t) = J2k∇x̂

Ĥ(x̂(t)) = J2k(Ĥx̂(t) + ĥ), (9)

x̂(t0) = W Tx0 = V +x0 (10)

with the definitions

Ĥ = V THV , ĥ = V Th (11)

with the corresponding reduced Hamiltonian function

Ĥ(x̂) = 1/2 x̂TĤx̂+ x̂Tĥ. (12)

3.2 Snapshot-based basis generation

A snapshot-based basis generation is used. This means
several simulations with the high-dimensional model (3)
are used to provide ns ∈ N state vectors xs

i = x(ti,µi),
i = 1, . . . , ns which are referred to as snapshots. The ROB
is computed based on the ensemble of all snapshots, e.g.
with the snapshot matrix Xs = [xs

1, . . . ,x
s
ns

] ∈ R2n×ns .

The Proper Symplectic Decomposition (PSD) (see Peng
and Mohseni (2016)) chooses the ROB to minimize the
residual of the symplectic projection (I−V V +)Xs of the
snapshot matrix, i.e.

minimize
V ∈R2n×2k

∥∥(I − V V +)Xs
∥∥
F
, (13)

subject to V TJ2nV = J2k, (14)

while the side condition (14) requires the ROB to be sym-
plectic (cf. (8)). An explicit solution for the minimization
problem (13)-(14) is yet not known and can only be pro-
vided under restrictive assumptions on the structure of the
ROB. Peng and Mohseni (2016) for example present the
Cotangent Lift and the Complex SVD whereas Maboudi
Afkham and Hesthaven (2016) present a greedy procedure
to solve the minimization problem.

4. NUMERICAL RESULTS

In this section, two structure-preserving model reduction
techniques are compared with a technique that does not
preserve the Hamiltonian structure. A relative, mean over
time, state space error measure is considered to compare
the model reduction techniques numerically

e(2k) =

nt∑
i=1

1

nt

‖x(ti)− V x̂(ti)‖2
‖x(ti)‖2

(15)

where t1, . . . , tnt ∈ [t0, te] are the discrete times and the
variable 2k is the size of the ROB V .

The example scenario is a beam that is clamped on one side
and loaded with a force on the other side. The force acts
on the boundary and pushes orthogonal to the beam. The
finite element model has 2n = 1152 degrees of freedom.
The ROB is created from snapshots computed with one

simulation with µ1 = [1.21 1011N/m, 8.08 1010N/m]
T

. The
reduction techniques are compared for the same parameter
µ1. In all cases, a symplectic integration scheme, namely
the implicit midpoint rule, is used for time integration.

The Cotangent Lift and the greedy approach from
Maboudi Afkham and Hesthaven (2016) are considered
as structure-preserving model reduction techniques in the
following. Both are compared with the Proper Orthogonal
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Fig. 1. Relative, mean over time, state space error e(2k)
for different ROB sizes 2k in a semi-logarithmic plot.

Decomposition (POD) which does not necessarily preserve
the Hamiltonian structure. For more details on the POD,
see e.g. Volkwein (2013).

The results of the comparison are displayed in Figure 1
in terms of the error measure from (15). It shows that
the POD is able to compute the best ROB with 2k = 100.
But the POD also yields the highest error with e(90) > 102

which was excluded from Figure 1 for the sake of a better
overview. Overall, the results of both structure-preserving
PSD techniques show less peaks and thus are more reliable.
The greedy approach is in all considered cases better than
the Cotangent Lift.

5. CONCLUSION

The structure-preserving model reduction was introduced
and the Proper Symplectic Decomposition was presented
as corresponding snapshot-based model reduction tech-
nique. The numerical results showed that the considered
structure-preserving model reduction techniques provide
bases that are more reliable than the ones created with
the Proper Orthogonal Decomposition.
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Chemostat refers to a laboratory device used for growing
microorganisms in a cultured environment and has been
regarded as an idealization of nature to study competition
modeling in mathematical biology, since they can be
used to study genetically altered microorganisms, waste
water treatment and play an important role in theoretical
ecology, to mention a few applications.

The simplest form of chemostat consists of three intercon-
nected tanks called feed bottle, culture vessel and collection
vessel, respectively. The substrate or nutrient is pumped
from the first tank to the culture vessel and another flow is
also pumped from the culture vessel to the third tank such
that the volume of the second one remains constant. It
leads us to consider the following deterministic chemostat
model with Monod kinetics

ds

dt
=D(sin − s)−

msx

a+ s
, (1)

dx

dt
=−Dx+

msx

a+ s
, (2)

where s(t) and x(t) denote concentrations of the nutrient
and the microbial biomass, respectively; sin denotes the
volumetric dilution rate, a is the half-saturation constant,
D is the dilution rate and m is the maximal consumption
rate of the nutrient and also the maximal specific growth
rate of microorganisms. We notice that all parameters are
supposed to be positive and a function Holling type-II,
µ(s) = ms/(a + s), is used as functional response of the
microorganisms describing how the nutrient is consumed
by the species.

Some standard assumptions are usually imposed when set-
ting up the simplest chemostat model (1)-(2), for instance,

⋆ Partially supported by FEDER and Ministerio de Economı́a y

Competitividad under grant MTM2015-63723-P, Junta de Andalućıa

under the Proyecto de Excelencia P12-FQM-1492 and VI Plan Propio

de Investigación y Transferencia de la Universidad de Sevilla.

it is usually supposed that the availability of the nutrient
and its supply rate are both fixed. Nevertheless, this kind
of restrictions are really strong since the real world is non-
autonomous and stochastic and this is one of the reasons
which encourage us to study stochastic and/or random
chemostat models.

There are many different ways to introduce stochasticity
and/or randomness in some deterministic model, see e.g.
Campillo et al. (2011, 2014, 2016); Grasman et al. (2005);
Imhof and Walcher (2005); Wang and Jiang (2017); Wang
et al. (2016); Xu and Yuan (2015); Zhao and Yuan (2016,
2017). Concerning the chemostat model, the authors in
Caraballo et al. (2017a) have already analyzed the simplest
chemostat model (1)-(2) in which a stochastic perturba-
tion of the payoff function in continuous-time replicator
dynamics is introduced, following the idea developed in
Fudenberg and Harris (1992) or in Foster and Young
(1990).

Even though there are many different ways to introduce
some stochastic perturbation in the chemostat model, it is
made on the growth function in most of cases. It could be
interesting when the number of individual bacteria is small
and there exists some risk of extinction of the biomass
in finite time, however this kind of situations hardly ever
take place in a nominal regime which is well supervised.
Nevertheless, fluctuations on the input flow that brings
permanently resources to the bacterial population in con-
tinuous cultures are much likely to be observed. In this
way, Caraballo and some co-authors already considered a
stochastic perturbation on the input flow in the simplest
chemostat model (1)-(2) by making use of the standard
Wiener process, also called brownian motion or white
noise, see e.g. Caraballo et al. (2016) and Caraballo et al.
(2017b). Unfortunately, some drawbacks can be found
when considering this unbounded stochastic process, for
instance, some state variables can take negative values,
since the fluctuations could be large enough, what would
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also mean that there is some reverting flow which is a
completely unrealistic situation from the biological point
of view. In addition, it is not possible to prove the per-
sistence of the microorganisms when perturbing the input
flow with the standard Wiener process.

In order to solve the previous problem, another kind of
random perturbation on the simplest chemostat model (1)-
(2) is analyzed in Caraballo et al. (2017c) by using the well-
known Orsntein-Uhlenbeck process, which is a stationary
mean-reverting Gaussian stochastic process given by the
solution of the Langevin equation

dzt + βztdt = νdωt, (3)

where ωt represents the Wiener process at time t ≥ 0,
β > 0 is a mean reversion constant that represents how
strongly our system reacts under some perturbation and
ν > 0 is a volatility constant which represents the variation
or the size of the noise.

The O-U process can be used to describe the position of
some particle by taking into account the friction, which
is the main difference with the standard Wiener process
and will make our models to be a much better approach
to the real ones, in fact, it can be understood as a
kind of generalization of the standard Wiener process,
which would correspond to take β = 0 and ν = 1
in (3). Thanks to that, the O-U process consists on a
really interesting tool when perturbing the input flow in
the chemostat model (1)-(2), since it will allow us to
control the perturbations in a suitable way such that the
input flow is bounded in some interval to be previously
determined by the practitioner.

In conclusion, it can be easily deduce that the O-U
process provides us a useful tool to model stochasticity
and randomness in the chemostat model since it allows us
to lead in models which are a much better approach to the
real ones. In addition, this new framework could also be
extended to analyze other kinds of models, for instance,
those ones with several species and competition and this
is currently our main point of interest.

In this work, the simplest chemostat model (1)-(2), per-
turbing the input flow by means of the O-U process, will be
presented. We will make use of the techniques involved in
the theory of random dynamical systems (see e.g. Arnold
(1998); Caraballo and Han (2016)) to provide some results
concerning the existence and uniqueness of global solution
just like that the existence and uniqueness of random
pullback attractor, which will allow us to obtain detailed
information about the long-time behavior of our model. In
particular, some conditions on the different parameters of
our model will be given to ensure the persistence of the
microbial biomass in the strong sense

lim
t→+∞

x(t) ≥ ρ > 0.

Finally, several numerical simulations comparing the re-
sults with the ones obtained when perturbing the input
flow by using the standard Wiener process will be also
shown.
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1. INTRODUCTION

In solar tower power plants a large number of heliostats 
concentrate the solar irradiation onto a receiver, which is 
mounted on the top of a tower. The two-axis tracking systems 
allow an individual alignment for each heliostat in order to 
reflect the irradiation to a so called aim point. The aim point 
is located on the receiver surface or an off receiver point, e.g. 
as a safety position. The aiming strategy defines the aim point 
of each heliostat for a specific operating point over the day. 
The concentrated solar power is absorbed by the receiver and 
a heat transfer medium is used to pipe the heat to the 
connected process, e.g. a Rankine power cycle. Different 
receivers  are currently employed or are under development 
using air, water/steam, molten salt, particles or liquid metals 
as  heat transfer medium.  

1.1 Aiming Strategy 

A good aiming strategy is of great importance for an efficient 
operation of solar power towers. Most of the radiation will 
most likely hit the receiver if all heliostats aim to its centre. 
Unfortunately, this aiming strategy cannot be applied as 
temperature and/or stress limits of the receiver, which can be 
expressed in a limit for the flux density, will be exceeded. 
Therefore, the aim points of the heliostats have to be 
distributed over the receiver surface in order to lower the 
peak flux densities. But this will presumably reduce the 
amount of radiation hitting the receiver. The aiming strategy 
can be characterized as a constraint optimization problem, in 
which the optical or thermal performance is optimized with 
respect to all limits for the receiver. 

2. OPTIMIZATION

2.1 Optimization Problem 

The flux distribution for each heliostat and each aim point is 
calculated with a Monte Carlo ray tracing approach. For this 
calculation model a discrete optimization approach is 

appropriate. Allowing only a finite number of aim points 
defines the optimization as a discrete problem with 
combinatorial characteristics. As described by Belhomme et 
al. (2014) the size of the solution space S and therefore the 
number of possible heliostat aim-point combinations is equal 
to the number of fixed aim points nZ to the power of the 
number of heliostats nH, as in (1). In solar tower power plants 
nH is typically larger than 5000. 

Hn
ZnS     (1) 

This combinatorial optimization problem belongs to the NP-
complete class. A trivial solution method, the complete 
enumeration of the solution space, is obviously unrealistic for 
typical heliostat field sizes. Heuristic methods are needed. 
Belhomme et al. (2014) therefore adapted the ant colony 
optimization metaheuristic (ACO) for the specific 
optimization problem. 

2.2 ACO 

The ACO method is a probabilistic technique that benefits 
from the principles of swarm intelligence and imitates the 
behaviour of ant colonies during foraging. The aiming 
optimization is transferred to a suitable problem for the ACO 
by defining the aim point configuration as the trail of an ant. 
The entire trail is divided in edges, which represents the aim 
point assignment for a specific heliostat. One trail represents 
one possible heliostat aim point assignment for the entire 
concentrator field. A suboptimal trail at the beginning is 
improved according heuristic information. The heuristic 
information, namely intercept factor and receiver 
performance, are calculated with a Monte-Carlo-Raytracer 
(Belhomme et al. (2009)) and a Finite-Element-Method, 
respectively. The raytracer calculates the flux density 
distribution on the receiver surface and the FEM model 
determines the receiver performance, the model is described 
by Flesch et al. (2017). The FEM model is a black box for the 
optimization procedure and determines the so called global 
quality value. If receiver constraints like flux density limits 
are exceeded the quality value is penalized by the FEM 
model. The result serves the ACO to update the attractiveness 
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of the edges, which affect the choice of a new trail in the 
following optimization step. 

The optimization procedure was tested on a realistic power 
plant scenario by Maldonado et al. (2017). The results show, 
that in heavily constrained cases the performance of the ACO 
drops. This is because of the drawback that in case of a limit 
exceedance the entire path is penalized even if only one 
heliostat/edge is responsible. To overcome this drawback a 
second optimization algorithm called local search (LS) was 
implemented. In this study several optimization parameters 
were examined using the scenario of Maldonado et al. (2017) 
in order to find fast convergence behaviour. 

2.4 LS 

The LS starts from a solution and moves towards an 
improvement, equally to the ACO. In contrast to the ACO, it 
only manipulates the aim point configuration in a local 
region; this means that the calculation of the local quality at a 
single edge is restricted to a so called neighbourhood. For a 
single LS run all heliostats’ assignments are examined one by 
one in a certain sequence. In each examination step the 
assignment for a single heliostat can change by shifting to 
one of the neighbouring aim points. The overall receiver 
performance is calculated after each shift until an improved 
solution is found in the neighbourhood. Otherwise the initial 
solution is maintained. Compared to the ACO a local change 
of a single heliostat aim point assignment is evaluated and 
local exceedances of allowable flux can be prevented without 
affecting the entire aim point configuration.  

3. EVALUATION OF BOTH METHODS

For the comparison of the different optimization methods the 
thermal output of the receiver during the optimization is 
plotted in dependence of the evaluations of the thermal 
model. One exemplary plot is shown in figure 1. The black 
curve represents the ACO. The remaining plots represent LS 
optimization runs with different parameter. 

Fig. 1. Results of the optimization for an exemplary time 
point with high flux density constraints. 

The curve with the blue crosses is parameterized with a small 
neighbourhood, whereas the curve with the red stars 

represents an enlarged neighbourhood. The purple dotted 
curve represents a case with the larger neighbourhood, but in 
comparison to the other cases the entire neighbourhood is 
examined in each evaluation. Figure 1 shows that the LS can 
outperform the ACO in the first 4·105 evaluation steps. The 
progresses for the LS are steeper at the very beginning and 
stagnate strongly afterwards. The black curve stagnates less 
and can outperform the LS after 6·105 evaluation steps. 

5. HYBRIDIZATION

The evaluation of optimization processes for different time 
and operating points strongly suggests to combine the 
methods. Furthermore, the number of evaluations for a single 
method is too large for many cases. The computational time 
for an online optimization where boundary conditions, e.g. 
solar irradiation, can change quickly must be minimized. 

Hybridization should be done automatically with a dynamic 
adjustment of the optimization parameters. The mathematical 
model of the receiver and the heliostat field should supply 
output quantities that decide on the optimization parameters 
and when to switch optimization strategy. 

The LS performs well if the case is highly constrained and 
the initial solution is within the analysed neighbourhood. On 
the other hand it can get stuck in a local optimum or even 
cannot find a valid solution. The ACO in contrast performs 
fairly well for most cases and better than the LS if the initial 
solution is far away from the global optimum and not heavily 
constrained. 

One hybridization approach is to start always with the ACO 
and to find a valid solution after very few runs. Afterwards 
switch to the LS to benefit from a possible steeper climb. The 
approach monitors a possible stagnation of the LS to decide if 
the ACO should continue proceeding. At the end of the 
optimization process the ACO should bring us close to the 
global optimum and the LS as a hill climber can do the rest. 
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1. INTRODUCTION

Molten salt central receiver (MSCR) systems are a very 

promising option for the large-scale production of electricity 

from solar radiation. A central receiver system consists of a 

field of thousands of mirrors which reflect the sunlight to the 

top of a tower, at which the receiver is located. The receiver 

is built of tubes where molten salt is flowing through as the 

heat transfer fluid. The salt is heated up due to the 

concentrated solar radiation. The hot salt can be easily stored 

in large unpressurized tanks driving a convectional steam 

plant afterwards. The efficiency and the easy storage option 

have made the MSCR system to the predominant 

concentrating solar technology in the recent years. 

Like every other technology which uses direct solar radiation, 

MSCR systems have to deal with a highly dynamic resource. 

Clouds which move over the heliostat field and shade 

heliostats result in a highly non-uniform and transient flux 

density distribution on the receiver surface. The task of the 

control system is to ensure a safe and efficient operation 

under the described dynamic boundary conditions. Due to the 

usage of molten salt used as fluid in the receiver the safety 

aspect during operation is especially challenging. 

Temperatures below 240°C must be avoided because of 

crystallization in the tubes (Zavoico, 2001). If not radiated for 

a short period, the system has to be drained. The upper 

temperature is restricted to approximately 600°C to avoid 

degradation of the salt and corrosion of tubes (Zavoico, 

2001). With regards to the typical design temperature range 

from 290°C to 565°C, the control system has to regulate the 

temperature with just a small deviation.  

The DLR has created a dynamic simulation environment for 

MSCR systems which includes a detailed model of the 

heliostat field and the receiver. The simulation environment 

can be used to simulate and evaluate control strategies of the 

receiver system under realistic boundary conditions.  

First, we briefly describe the approach and provide some 

validation data. Then, initial results of our current work are 

shown and an outlook to our planned activities is given. 

2. METHODS

A MSCR system can be divided into subunits. In the present 

analysis the heliostat field and the receiver are the two units 

of interest. For a realistic analysis of the receiver dynamics it 

is necessary to have a model of the heliostat field which 

calculates the flux density distribution on the receiver. We 

used the in-house developed ray tracing tool STRAL 

(Belhomme et al, 2009) for this task. The receiver, however, 

is modelled by using the modelling language Modelica within 

Dymola. Both tools are connected with the third party tool 

TISC (Kossel et al, 2006), which exchanges data in a 

predefined synchronization rate. In the following the two 

models are described in little more detail. 

2.1 Heliostat field model 

STRAL is a simulation tool which can be used to calculate 

the flux density produced by a heliostat field on any arbitrary 

surface in high calculation speed. In our case, the cylindrical 

or polygonal shape of the receiver is used. STRAL has 

proven its high accuracy in several tests (Belhomme et al, 

2009). To reproduce the flux of an existing field, heliostat 

surface information obtained from deflectometry 

measurements can be included (Belhomme et al, 2009). 

STRAL itself does not offer a method to include shading data 

of clouds, but it can be controlled from Matlab: in Matlab a 

tool was created which can be used to include DNI maps 

which are created as described in (Schenk et al, 2015). In the 

model a heliostat is switched off if the flux density in its 

centre falls under a given threshold. This is a simplification 

as in reality a heliostat can obviously be partly shaded, but 

the influence is assumed to be small in a field with typically 

several ten-thousands of heliostats.  

2.2 Receiver model 

The model of the receiver is implemented in Dymola with the 

modelling language Modelica. A receiver consists of panels 

through which the fluid flows sequentially. The panels are 

built of parallel tubes. To reduce the computational effort in 

the simulation several tubes can be bundled and represented 

by a single tube which is simulated. The fluid in the tubes is 

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 41-42, DOI: 10.11128/arep.55.a55231 41

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



discretized one dimensionally with a finite volume approach 

using a staggered grid. The tube is divided in a front side and 

back side element. To calculate the temperature of the front 

element the differential equation 

        

   tTmcTTdkA

ddTTddTTkz

CC

IC





CBFB

ICCOCO

2

lnln




(1) 

is solved with the mass of the element m, the heat capacity c, 

the length Δz, the conductivity k, the contact surface between 

front and back AFB and the temperature T and diameter at the 

outer (O), central (C) and inner (I) position. As boundary for 

the outer temperature the relation 

        COCO

44 ln ddTTkzTTTTaIzd OOO     (2) 

is used with the absorptivity a, the emissivity ε, the 

convective heat transfer coefficient α, the incoming radiation 

I and the ambient temperature T∞. The boundary for the inner 

temperature is similar, except it connects the heat transfer 

through the tube to the fluid temperature with a heat transfer 

correlation. The equation for the backside element is similar 

to (1) and uses the same inner boundary. The outer surface is 

assumed to be adiabatic.  

Validation was performed with more detailed CFD and FEM 

simulations and additionally with experimental data as 

described in Flesch et al (2017). A comparison of the fluid 

temperature at several locations in the receiver for one case is 

given in Fig. 1. The model predicts the dynamics of the 

temperature very well. 

Fig.1. Validation with experimental data. The different 

colours indicate different position in the receiver. 

3 RESULTS 

As example simulation result the temperature response of the 

system on a cloud shading the southern part of the heliostat 

field of a plant located in South Africa is shown in Fig 2. The 

cloud moves from west to east. In the plots the results for 

three different control systems is shown: the first system 

corresponds to the one used in the Solar Two plant (Pacheco, 

2002). It includes a so-called cloud standby (CSB) which 

increases the mass flow in case of a skewed flux distribution 

caused by clouds. The second system equals the Solar Two 

approach without CSB. The third system is as well similar to 

the Solar Two system but instead of a CSB it uses limits for 

the mass flow which are calculated from a model which uses 

an estimate of the current radiation on the receiver. The CSB 

in the Solar Two system is activated little too late to fully 

prevent the system from excessive temperatures, though it 

does avoid hazardous temperature peaks as one can see in 

case of the deactivated cloud standby. The system with the 

limits based on the current conditions performs better during 

cloud entry, but temperature overshoots when the cloud 

leaves. In that situation the control system requests a mass 

flow which is higher than the maximum mass flow of the 

system. This can be prevented by increasing the maximum 

mass flow rate or by using some kind of cloud forecast. 

Further results will be shown on the conference. 

Fig. 2. Film temperature and mass flow of the receiver during 

cloud passage: The yellow colour indicates the temperature 

range which is allowed for short period. A temperature within 

the red range should be strictly avoided.  

4. SUMMARY AND OUTLOOK

A coupled simulation approach has been developed to 

simulate the dynamics of a MSCR system e.g. during clouds. 

The state-of-the-art control system as used in the Solar Two 

plant with and without CSB was analysed and an enhanced 

system developed based on the lessons learned. In a recently 

started project we work on further improvements in the 

control of the normal operation by using a model predictive 

control. Besides we are working on an operation assistant 

system, which aims to improve and support the operators 

during receiver start-up and shutdown.  
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1. INTRODUCTION

The individual character of microbial systems is very dom-
inant, since cells vary in plenty of properties, such as
morphology, cell cycle state and many more. To accurately
capture biological variability by simulations in silico sev-
eral sources of noise must be considered. In this contribu-
tion we refer to intrinsic noise as an inherent stochastic
process, extrinsic noise as cell-to-cell variability and exter-
nal noise as external perturbations, see Fig. 1A. In order
to clarify our understanding of the different sources of
noise we investigate in Fig. 1B-D their impact on a simple
decay process P → Ø Pischel et al. (2017). We modeled
intrinsic noise via the Gillespie algorithm Gillespie et al.
(2013), which captures stochastic biochemical reactions.
In contrast extrinsic noise was computed via Monte Carlo
sampling of the distributed initial conditions accounting
for cell-to-cell variability. Both effects lead to a probability
density function describing the abundance of the protein P
for every time point. The synergy of intrinsic and extrinsic
noise yields a further spread of the probability density
function.

The interaction of different sources of noise and their
impact on the overall variability of bioprocesses is hardly
investigated due to computational and experimental chal-
lenges Lencastre Fernandes et al. (2011); Delvigne and
Goffin (2014). A popular approach to model stochastic
biochemical reaction systems is by means of the chemical
master equation, which governs the temporal evolution of
the probability P to find the system in a certain state x

d

dt
P (x(t), t) =

m∑
k=1

ak(x(t)−Nk)P (x(t)−Nk, t)

− ak(x(t))P (x(t), t).

(1)

We denote by a the reaction propensities and by N the
stoichiometric matrix. The index k indicates the chemical
reaction. In general it is not possible to solve the chemi-
cal master equation analytically, wherefore approximate
methods are used, e.g. the Gillespie algorithm and its
derivations, the methods of moments, the system size

? This work was supported by the Federal Ministry of Education
and Research in Germany [031A304 to D.P.].

expansion or the finite state projection algorithm Kaze-
roonian et al. (2016). All of these methods have several
drawbacks and cannot capture different sources of noise.
Thus, we present a recent developed method, which is
capable to simulate intrinsic, extrinsic and external noise
simultaneously Pischel et al. (2017).

2. EFFICIENT MODELING OF VARIOUS SOURCES
OF NOISE

The simplest approach to model different sources of noise
simultaneously is by Monte Carlo sampling of uncertain
parameters combined with the temporal system evolution
via a stochastic process Wilkinson (2009). In our appli-
cation the stochastic process is governed by the chemi-
cal master equation, which is why we use the Gillespie
algorithm through this study. The combined approach is
asymptotically exact and yields an accurate solution of
the chemical master equation, which goes along with a
huge computational load. To accelerate this proceeding
we approximate the Monte Carlo sampling of the uncer-
tain parameters by the unscented transformation, which
chooses only 2nσ + 1 samples (sigma points) of the nσ
uncertain parameters deterministically Julier et al. (2000).
The sigma points are propagated through time via the τ -
leaping algorithm, which is an efficient approximation of
the Gillespie algorithm. For every time point t the mean
and covariance of the system can be estimated from the
propagated sigma points. Since the temporal evolution
was computed using a stochastic process this procedure
is repeated n times. With assumptions, e.g. normality
or log-normality, the underlying distribution ρ̂i(t) can be
reconstructed from the mean and covariance for each run
i. By weighted superposition of the distributions

ρ̃ =
n∑
i=1

ωiρi =
1

n

n∑
i=1

ρ̂i (2)

we obtain an approximate solution ρ̃ of the chemical mas-
ter equations with uncertain parameters. This algorithm
is outlined in Fig. 2. We applied our method to several
examples of systems biology and observed accelerated
convergence regarding the statistical moments and the
probability density function compared to the combined
Monte Carlo approach Pischel et al. (2017). Although our
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Fig. 1. Noisy biochemical reaction systems: (A) Several sources of noise impact biological variability. Intrinsic (B),
extrinsic (C), and intrinsic combined with extrinsic noise perturb a decay process Pischel et al. (2017).
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Fig. 2. Algorithm outline Pischel et al. (2017).

approximate method might in some cases not converge to
the exact solution we observe qualitative conformance.

3. CONCLUSION

In this study an efficient approach to model different
sources of noise in biochemical reaction systems simul-
taneously was proposed. Our method converges very fast
to an approximate solution compared to straightforward
Monte Carlo methods. Hence, it is well suited to speed up
costly optimization tasks, e.g. parameter estimation prob-
lems of distributed, stochastic biochemical systems Pischel
et al. (2017). Since optimization of stochastic systems
is rarely performed due to its huge computational load
Poovathingal and Gunawan (2010); Fröhlich et al. (2016)
our approach paves the way to further understanding of
uncertainty in complex dynamical systems.
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1. INTRODUCTION

The technology of capsule endoscopy, which employs a
swallowable device propelled by gastrointestinal peristalsis
through small intestinal tract to transmits video images,
has been used in the past decade for evaluating gastroin-
testinal bleeding, inflammation, tumours, and some other
diseases, see McCaffrey et al. (2008); Koulaouzidis et al.
(2013) However, the bottleneck issue of such technology is
the lack of motion control, i.e. the capsule cannot settle
down at a suspected area for longer period or take a
reverse travel within the tract, causing missing images of
symptom, which has consumed massive doctor’s time and
oversight of diseases.

This work concerns this issue by employing the so-
called vibro-impact capsule technique (see e.g. Chernousko
(2002); Liu et al. (2013); Jiang and Xu (2017)), which uti-
lizes internal vibration and impact forces for bidirectional
rectilinear self-propelled driving. Mathematical modelling
of the vibro-impact capsule system will be considered in
the environment of small intestinal tract, and a complete
analysis of the capsule’s performance in terms of its pro-
gression speed and energy efficiency will be carried out.

2. MATHEMATICAL MODELLING

In this work, we consider the two-degrees-of-freedom dy-
namical capsule system as shown in Fig. 1(a), where a
movable internal mass m1 is driven by a harmonic force
with magnitude Pd and frequency Ω. The internal mass
interacts with a rigid capsule m2 via a linear spring with
stiffness k and a viscous damper with damping coefficient
c. The capsule has a cylindrical body with a hemispherical
head and tail. Impact between the internal mass and
a weightless plate connected to the capsule through a
secondary spring with stiffness k1 may occur, once their
relative displacement x1 − x2 is larger or equal to the gap
g1, where x1 and x2 are the absolute displacements of the
internal mass and the capsule, respectively.
⋆ Y. Liu would like to acknowledge the financial support from

EPSRC for his First Grant (Grant No. EP/P023983/1).

2.1 Resistance

As the diameter of the capsule is larger than the inner
diameter of the small intestine, the capsule stretches the
intestinal tract to yield hoop stress. This hoop stress
causes normal and frictional forces on the capsule yielding
environmental resistance which prevents the motion of
the capsule. In addition, the gravity of the capsule which
exerts normal pressure on the intestinal tract also adds
additional value to the resistance. It is therefore that the
overall resistance on the capsule can be written as

Fr = Fhoop + Fgravity, (1)

where Fhoop and Fgravity represent the resistances intro-
duced by hoop stress and capsule gravity, respectively. As
depicted in Fig. 1(b), the resistance due to the hoop stress
can be given as

Fhoop = − sign(v2)(FHp + FTp + FHf + FBf + FTf ), (2)

where v2 is the capsule speed, FHp and FTp are the normal
pressures of the intestine on the capsule head and tail, and
FHf , FBf and FTf are the frictional forces exerted on the
head, the body, and the tail of the capsule, along the axial
direction of the capsule, respectively. As the cross section
of the small intestine is expanded by the capsule yielding
tensile stress, the hoop stress depends on the geometric
deformation of the intestinal wall. The geometric param-
eters of the capsule are shown in Figure. 1(b), where L is
the length of the capsule, Rc is the radius of the head, the
body, and the tail, Ri is the original inner radius of the
intestinal tract, ϕc is the angle of the point from where
the intestine tract starts to surround the capsule, and xc

is the distance from the contact point to the centre of the
head (or the tail).

2.2 Equations of motion

As depicted in Fig. 1, a periodic external excitation,
Pd cos(Ωt), is applied on the inner mass m1 to drive the
capsule m2. The inner mass interacts with the capsule via
a damped spring at the tail and a secondary spring at
the head of the capsule. Due to the gap between the mass
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Fig. 1. (a) Physical model of the vibro-impact capsule in small intestine. (b) Resistance forces and geometric parameters
of the capsule. The capsule is depicted in cyan, and the intestinal tract is presented in light red.

Fig. 2. (a) Hoop stress on the head and the body of the capsule. (b) Cross section of the intestinal tract. The intestinal
tract without stretch is depicted in grey, and the one with stretch is shown in light red.

and the secondary spring, g1, the interaction between m1

and m2 keeps switching between two phases: no contact
(x1−g1−x2 < 0) and contact (x2−g1−x1 ≥ 0). Therefore,
the mutual interactive force between the inner mass and
the capsule can be written as

Fi = −c(ẋ1 − ẋ2)− k(x1 − x2)−H1k1(x1 − g1 − x2), (3)

where H1 is the Heaviside function given by

H1 = H(x1 − g1 − x2). (4)

Here, a detailed consideration of these switching phases
can be found in Liu et al. (2013). Finally, the compre-
hensive equations of motion for the vibro-impact capsule
system are written as

ẋ1 = v1,

v̇1 = 1
m1

[Pd cos(Ωt) + Fi]− g sin γ,

ẋ2 = v2,

v̇2 = − 1
m2

[Fi − Fhoop − Fgravity]− g sin γ.

(5)

3. CONCLUDING REMARKS

Modelling of the self-propelled vibro-impact capsule sys-
tem moving in a small intestinal tract was studied in this
paper. Our studies focused on exploring the dynamics of
the system and its performance in terms of average velocity
and energy efficiency under variations of different system
and control parameters, such as the forcing frequency and
magnitude, the natural frequency of the inner mass, the
contact gap between the inner mass and the secondary
spring, and the capsule’s radius and length.

Future works include prototype design and fabrication,
test rig design, and experimental testing of the capsule
prototype. Numerical studies in this paper will support
the design and fabrication of the capsule prototype, and an
artificial intestinal environment will be created for model
validation. Research findings along this direction will be
reported in a separate publication in due course.
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1. INTRODUCTION

Complex systems are usually decomposed into sub-systems,
which are often modelled using different tools and meth-
ods. Co-simulation is a novel approach which aims at a
cooperative simulation of several such tools. This paper
presents a discussion of different co-simulation interfaces
between Trnsys and Simulink. The interfaces are compared
with respect to user-friendliness and flexibility, compu-
tational costs and accuracy. For this purpose, a thermal
engineering case study is considered, which includes a
compact thermal energy storage modelled in Trnsys and a
heat sink modelled in Simulink. The interfaces considered
include the Functional Mockup Interface (FMI), the Build-
ing Controls Virtual Test Bed (BCVTB) and a Component
Object Model (COM), based on Trnsys’ Type155.

2. CO-SIMULATION INTERFACES

FMI (Blochwitz et al., 2009) is a tool independent
standard that has been developed in the ITEA2 European
Advancement project MODELISAR. FMI supports both
model exchange and co-simulation of dynamic models
using a combination of xml-files and executables. FMI is
currently supported by 95 tools and is used by various
industries and universities. The available implementation
of FMI between Trnsys and Simulink based on (Widl,
2015) and (Modelon, 2017) currently allows for a loose
coupling scheme only.
BCVTB is a software environment developed at Lawrence
Berkeley National Laboratory (Wetter, 2011). BCVTB is
based on Ptolemy II, an open-source software framework
supporting experimentation with actor-oriented design.
BCVTB allows in general for a loose coupling scheme only.
Type155 is available in Trnsys’ standard library, and
establishes a communication between Trnsys and Matlab.
In order to build a coupling between Trnsys and Simulink,
a Matlab-script was developed to start and stop Simulink
simulations at each iteration to ensure a strong coupling
scheme, see (Engel et al., 2017a) and (Engel et al., 2017c).

3. METHOD

We introduce a case study where a sorption-based compact
thermal energy storage is coupled thermally to a simple
heat sink. The corresponding system design is shown in
Figure 1. We discuss continuous time co-simulation only,

Interface for
Co-Simulation

Compact thermal
energy storage (Ts)

Heat exchange via
heat transfer fluid

Heat sink - one
thermal node (Tb)

Trnsys
model

Simulink
model

Ts,out Ts,in

Fig. 1. The case study: A compact thermal energy storage
is connected to a heat sink via a heat transfer fluid.
The storage is modelled in Trnsys, while the heat sink
is modelled in Simulink.

which is why discrete events like control switches are
avoided. The compact thermal energy storage is modelled
in Trnsys as detailed in (Engel et al. 2017b), results were
presented also in (Engel et al., 2016). The heat sink
including one thermal node is modelled in Simulink, as
detailed in (Engel et al., 2017a).
The interface of the co-simulation is situated physically
in the circuit of the heat transfer fluid. Correspondingly,
the inlet and outlet temperatures Ts,in and Ts,out of the
sorption reactor heat exchanger are the variables commu-
nicated via the interface between Trnsys and Simulink.
The different interfaces are compared with respect to user-
friendliness and flexibility, accuracy and computational
costs. The user-friendliness and the flexibility is judged
only on a qualitative basis. The model is implemented
also entirely in Trnsys, referred to as “reference simula-
tion”, employed with improved solver parameters to en-
sure high accuracy results. These serve for a discussion of
the accuracy of the various co-simulations. The variables
communicated via the co-simulation interface (inlet and
outlet temperature of the heat transfer fluid) as well as
the temperatures of the heat storage and the body are
compared to the corresponding time-series results obtained
in the reference simulation. The maximum deviation is
considered as measure for the accuracy.
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4. RESULTS

The behaviour trace of the system is shown as time series
in Figure 2. The inaccuracies of the various interfaces are
shown in Figures 3 and 4.
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Fig. 2. Results for the temperatures of the heat sink Tb,
the heat storage Ts, the outlet of the heat storage
Ts,out and the inlet of the heat storage Ts,in. The
reaction increases the temperature of the heat storage
up to roughly 39oC, which is in the further progress
cooled through the thermal coupling to the heat sink,
until the different temperatures eventually converge.
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Fig. 3. Deviation of the different temperatures from the
co-simulation based on the Type155 (strong coupling)
compared to the ones of the reference simulation. The
deviations of the monolithic simulation are in the
same ballpark. For declaration of the variables see
Figure 2.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
Maximum deviation from reference [K]

100

101

102

103

Co
m

pu
ta

tio
na

l d
em

an
d 

[s
] strong (Type155)

loose sequential, linear (Type155)

Monolithic loose parallel (FMI)

loose sequential, const. (Type155)

loose parallel (BCVTB)

Fig. 5. An overview of different co-simulation interfaces,
confronting accuracy and computational demand.

5. CONCLUSIONS

Considering the handling of the interface, the Type155-
based interface offers a lot of flexibility to the user, allow-
ing to implement loose and strong coupling co-simulation,
and also various extrapolation schemes for the input vari-
ables. BCVTB offers out-of-the-box models for the various
interfaces, while it is limited to loose coupling with a
constant extrapolation of the input variables. FMI is a gen-
eral and flexible approach, however, the implementation
available specifically for Trnsys and Simulink is limited to
loose coupling, due to restrictions imposed by Trnsys.
The accuracy and the computational demand of the im-
plemented strong and loose coupling co-simulations differ
significantly, as shown in Figure 5.
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1. INTRODUCTION

Various mathematical models reproducing similar obser-
vations have different advantages and disadvantages. Con-
sequently, the question evolves how to compare and relate
models in a hierarchical order. We present two approaches
for modeling viral liver infections such as hepatitis C, a
world wide disease which chronifies in up to 75% of the
cases, cf. Schwab (2011). The first model using reaction-
diffusion equations allows analytical longterm behavior
predictions. The second model, a cellular automaton, de-
scribes the interactions of virus and T cells in a smaller
dimension and includes new mechanisms.

2. MODELING HEPATITIS

We list properties of the liver as well as of viral liver
infections. Based on this, we present a reaction-diffusion
system in Sec. 2.2 and a cellular automaton in Sec. 2.3.

2.1 Liver infections

The liver lobes consist of hepatic lobules connected to the
veins. This results in a ramified small-scale system.

After the infection, the immune system reacts to the virus.
First, dendritic cells report the presence of the virus.
As a reaction, T cells are produced in the lymphocytes.
Different kinds of T cells are involved in the primary
immune reaction. T helper cells induce B lymphocytes to
produce antigens. The killer T cells identify infected cells
and trigger the programmed cell death. Killer T cells cause
most of the damage caused by a liver infection, cf. Bowen
et al. (2002). The incubation time between the infection
and the attack of the killer T cells is several weeks.

The inflammation starts with an acute phase in which the
killer T cells try to eliminate the virus. Then, either the
virus is eliminated and the immune reaction fades, or in
case of a chronic course, the virus remains in remote areas
of the liver and a diminished immune reaction persists.

2.2 Reaction-diffusion model

In the model, first presented by Kerl (2012), the im-
mune reaction is summarized in a term of T cells v.

The interactions of the virus u and the T cells v are
based on Lotka-Volterra equations with a logistic growth
w(u) = (1− u) u−εu+κ of the virus, including the Allee effect,

and an inflow term j[u] which describes the inflow of T cells
through the vein depending on the total virus population
in the liver. For x ∈ Ω and t > 0, the equations

u̇ = uw(u)− γuv + α∆u ,

v̇ = j[u]− η(1− u)v + β∆v − µ∆u
(1)

describe the reactions between the virus and T cells,
the diffusion spread of the populations (α, β) and the
chemotactic effects (µ), which direct T cells to the virus.
Initial values u0(x) and v0(x) and homogenous Neumann
boundary conditions are used.

The occurrence of chronifications depends on the minimal
eigenvalue λ of the negative Laplacian in Ω with Neu-
mann boundary conditions, the maximal diffusion coef-
ficient d = max{α, β} and the maximal change rate of the
reactions M . If these parameters fulfill σ = λd −M > 0,
chronic courses can be ruled out, see Smoller (1994).

2.3 Cellular automaton

We use a rectangular geometry with n × m cells and
an additional cut with regard to the small-scale liver
structure. The possible states of a cell are obstacle (-1),
dead (0), healthy (1), infected (2) and attacked by T cells
(3), see Fig. 1. We use these discrete states and a coupled
map lattice for the amount of T cells in each cell. The
automaton is inhomogeneous because we model an inflow
area as described in Sec. 2.1. The update uses a Neumann
neighborhood with radius 1. The chemotactic effects are
gained from a Moore neighborhood with radius 3.

-1

0

1

2

3

Fig. 1. Change of cell states: Obstacles (-1) remains,
healthy cells (0) change over infected (1), and attacked
by T cells (2) to dead (3). Dead cells may get healthy.
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3. RESULTS

In this section, we compare the simulations of both models
and highlight similarities and differences.

3.1 Reaction-diffusion model

The area Ω has a cut at x1 = 0.5 with regard to
the small-scale liver structure and an inflow area around
(x1, x2) = (1, 1). Depending on the parameters in Eq. (1),
both main courses, healing and chronification, are repro-
ducible. For parameters with σ < 0, we may observe spa-
tial inhomogeneous, stationary solutions, which we inter-
pret as chronic infections, see Fig. 2. The virus persists in
an area remote from the inflow area. The immune reaction
does not fade out.
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0.5
0 0

Fig. 2. Stationary virus and T cell distribution in a chronic
infection course, modeled with Eq. (1).

3.2 Cellular automaton (CA)

The numerical simulation by hands of the cellular automa-
ton reproduces both disease courses as well as the model in
Eq. (1). For small chemotaxis parameters µ, it shows a be-
havior which is equivalent to the reaction-diffusion model.
The system behavior of a chronic infection is comparable
to the simulation in Fig. 2. For healing courses with strong
chemotactic effects, we observe a new mechanism. A group
of T cells follows the virus behind the cut. As an effect,
there is a gap between the separated group and the inflow
area without any virus and T cells. The group of T cells
eliminates the virus and dies thereafter. The separated
group of T cells in an active phase is shown in Fig. 3,
in the lower right, behind the obstacle.

cell states
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dead
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attacked

infected
T cell population
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15

0

50

100
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Fig. 3. Isolation of T cells in an active phase, simulation
by hands of the cellular automaton. The barrier of
obstacles is marked with white crosses.

3.3 Model family

Mathematical modeling starts with the observation of the
object to be modeled. We presented the most relevant
observations in Sec. 2.1. They form our constructed reality,

the observed liver. From a philosophical point of view, the
observations are already a first model of the real world or,
in our case, of the real liver. In the next modeling step, we
chose a way of modeling, e.g. partial differential equations,
cellular automata or stochastic models. For each modeling
approach, we select mechanisms for describing the con-
structed reality, i.e. the interaction of virus and T cells or
chemotactic effects. Both presented models used an area
with a cut as a model for the small-scale liver structure.

As a joint result, both models show healing and chronic
courses, in dependency of the size of the area Ω, the
chosen parameters and the initial conditions. The cellular
automaton inherits the longterm behavior of system (1).
This is reasonable because the average of the cellular
automaton fits to the finite differences of the reaction
diffusion system, cf. Weimar (1994). Besides this similarity,
the numerical simulation of the cellular automaton shows
a separation of some T cells, see Fig. 3. This effect is
not included in the reaction diffusion model. Due to this,
the question evolves, wether a reaction diffusion model
including this additional effect exists, see Fig. 4.

real liver

observed liver

reaction-diffusion
model, Eq. (1)

CA
complete

Discretization
of Eq. (1)

CA without
chemotaxis

?

Fig. 4. Model hierarchy. Downwards: sub-models, upwards:
model refinements. The discretization of Eq. (1) is
equivalent to the CA without chemotaxis. This one
is a discrete sub-model of the continuous Eq. (1) and
a simplification of the CA described in Sec. 3.2. It is
questionable whether there is a refined PDE model
reproducing the separated T cell group.
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1. INTRODUCTION

The optimized layout of a central receiver power plants
requires an accurate but fast simulation of the plant
operation depending on its design parameters. Ray tracing
models are commonly used to calculate the solar flux
concentrated by the heliostat field. The computation time
for an annual performance simulation is critical for the
usage in an optimization procedure.

The main influences on run-time are the spatial (number of
rays) and temporal (number of time points) discretization.
For the annual simulation, usually weather data from clear
sky models is used, e.g. the meteorological radiation model
(MRM), see Badescu (2008). Using non-symmetric mea-
sured weather data (e.g. from a TMY file) the temporal
sample points have to be chosen in a different way.

In this paper, different temporal integration approaches
are presented and discussed for the case of measured
weather data.

2. TEMPORAL INTEGRATION

The annual energy production Eyear of the solar tower
power plant can be computed with the sum over all days
d and the integral of the daily power production,

Eyear =
365∑
d=1

(∫ sunset

sunrise

P (t, d) dt

)
︸ ︷︷ ︸

=:E(DNI(d))

, (1)

where E(DNI(d)) describes the direct normal irradiation
at day d. The computation of the annual energy produc-
tion can be accelerated by reducing the number of samples
per day by quadrature rules and reducing the number of
days by clustering.

2.1 Quadrature methods for intraday sampling

Quadrature methods can be used to approximate the
integral of the daily energy E(DNI(d)) by using specific
sampling points and their according temporal weight.

Because hourly data is provided by the weather files,
so far just quadrature methods with a constant time
step of one hour are used, e.g. the summed midpoint
and summed trapezoidal rule. But to apply quadrature
rules with higher order (e.g. Gauss-Legendre quadrature
rule) and reduce the number of sampling points, a higher
temporal resolution than just hourly constant data is
helpful and would further increase the accuracy. It is
possible to achieve a higher resolution from the hourly
averaged measured data by using data reconstruction, see
Fig. 2.1.

6 8 10 12 14 16 18 20
0

200

400

600

800

Fig. 1. Reconstruction of the hourly averaged measured
DNI data (blue) using the conservative and TVD
superbee limiter (red).

DNI value at day d around the time ti changes as follows:

DNI(t, d) = DNI(ti, d) + σ(ti) · (t− ti),

t ∈ [ti −
∆t

2
, ti +

∆t

2
],

(2)

with its originally measured value DNI(ti, d), and recon-
structed slope σ(ti).

Calculating the reconstructed slope with the superbee
limiter, which fulfills the required properties of conservativ
and TVD, see Leveque (1986), the error between the
hourly averaged measured values and the real values can
be reduced by 32% for a cloudy day. For a clear sky, e.g.
the data from the MRM model, the error can be reduced
by 85%.
With the reconstructed values three different quadrature-
rules, midpoint, trapezoidal and Gauss-Legendre with a
changing number of quadrature points are investigated
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for computing the daily energy, see Fig. 2.1. For Mumbai
around 7 sample points per day are needed for a sufficient
accuracy.
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Fig. 2. Comparison of the three quadrature-rules with a
changing number of quadrature points for Mumbai.

2.2 Clustering of days

Considering the different, day dependent weather condi-
tions an averaged DNI value of the neighboring days can
be computed by

˜DNI(dk) =

dk+dk+1
2∑

i=
dk−1+dk

2

2

dk+1 − dk−1
DNI(di). (3)

Using this averaged DNI for the simulated, representing
day the annual energy can be computed with the summed
trapezoidal-rule

Eyear ≈
m−1∑
k=1

dk+1 − dk

2
( E( ˜DNI(dk+1)) + E( ˜DNI(dk)) ). (4)

Comparing the annual energy computed with the aggre-
gated approach with the usually used constant day sam-
pling, the new approach allows to reduce the number of
sample points to only 38 points, see Fig. 2.2.
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Fig. 3. Comparison of the constant day sampling with
the aggregated day sampling approach for a changing
number of sample points.

3. ANGULAR INTEGRATION

The annual energy production Eyear can also be computed
by considering the sun path in the domain of the solar
angles instead of the time domain. Therefore, the DNI
needs to be transformed from the time domain into the
angular domain. Then, two-dimensional quadrature rules
are used to compute the annual energy, e.g. midpoint-
rule, trapezoidal-rule, Gauss-Legendre quadrature-rule.
The underlying quadrature method defines a region in the
angular-solar domain. All DNI values of this region are
aggregated to one average DNI value, while the number of
data points resemble the temporal weight of this region,
see Fig 3.

Using the integration in the azimuth-altitude domain the
number of sampling points for the computation of the
annual energy for Mumbai can be reduced to 18.

Fig. 4. Integration domain for the transformation to az-
imuth and altitude with a midpoint grid (left) and to
ecliptic longitude hour angle with a Gauss-Legendre
grid (right).

A transformation to the hour angle and the ecliptic longi-
tude gives further enhancements, such as the almost rect-
angular shape of the integration domain, see V. Grigoriev
and Blanco (2015). For Mumbai the number of sample
points could be reduced further to just 16 sample points
per year.

4. FIELD EFFICIENCY MAP

Looking at the equation for the power of one heliostat Pi

with the number of considered losses n,

Pi(t, d) = Ai · IDNI(t, d) ·
n∑
ηn,i(t, d) (5)

the power depends linearly on the intensity of the sun
IDNI(t, d). This allows to uncouple the DNI values and
the efficiency of the power plant. A field efficiency map
is computed, including the efficiency of the power plant
for all possible sun positions, by using e.g polynomial
interpolation or spline functions. With this field efficiency
map the energy of the power plant can be computed
extremely fast by only multiplying the efficiency with the
corresponding DNI value.

5. CONCLUSION

For industrial performance computations, real measured
weather data should be used. For that case, smarter inte-
gration methods and a field efficiency map are successfully
used, such that the simulation time is strongly reduced.
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1. INTRODUCTION

The cell cortex, formed by membrane linked actin fila-
ments, is an important functional unit of almost all eu-
karyotic cells and involved in a variety of major cellular
processes like cell division, motility, formation and stabi-
lization of cell shape(Alberts et al., 1994). Hence, modeling
and understanding of the cell cortex is of great interest
in the context of bottom-up synthetic biology (Schwille,
2011).
The polymeric and filamentous protein F-actin forms the
mesh-like and therefore viscoelastic material. Together
with the myofilament myosin II, a filamentous protein with
a variety of motor domain (Fig. 1b), the cortex has active
gel properties.
An experimental study with a synthetic ’minimal actin
cortices’ (Vogel and Schwille, 2012) showed that spatial
cluster formation of actin cortices only occur in a range of
0.1 to 10 µM and surprisingly not for high ATP concen-
trations (Vogel et al., 2013).

2. THE ACTOMYOSIN MODEL

To explain the experimental findings qualitatively a two
dimensional continuum model was developed in polar co-
ordinates to represent a cut through a spherical cell or vesi-
cle. Additionally, the actomyosin cortex properties were
mimicked by assuming that the actin and myosin species
remain close to the membrane in a very thin layer. Thus,
the actomyosin cortex can be described as a one dimen-
sional ring system with periodic boundary conditions. In
contrast, the energy source ATP, which is consumed by
the cortex, diffuses from the inside through the whole two
dimensional system (A.1). The spatial distribution of the
cortex species obeys an advection-diffusion equation with
additional mass action reaction rates (A.2-A.4).
The underlying force generating biochemical circuit is the
well described myosin cross bridge cycle (Rayment et al.,
1993). We used a simplified spatial distributed myosin
cross bridge model (Fig. 1a) where energy provided by
ATP hydroxylation causes a conformational change of the
myosin head (M). The active myosin head is able to in-
teract with F-actin forming an active actomyosin complex
? This work is a part of the MaxSynBio consortium, which is funded
by the German Federal Ministry of Education and Research and the
Max Planck Society.

(A-M). The unstable active actomyosin complex performs
a further conformational change of the myosin head trig-
gering an acceleration of the F-actin filament due to the
mechanical coupling. To close the cycle, ATP is needed to
release the myosin head from the F-actin filament.
We assumed that the binding and releasing of the myosin
head are the rate-determining steps. Thus, force genera-
tion and the ATP hydroxylation take place during myosin
binding (r1) and detachment (r2).
The momentum equation with viscoelastic material behav-
iors is described by

D(ρv)

Dt
=

∂

∂ϕ
(σv + σe + σm), (1)

consisting of the material derivation for F-actin momen-
tum ρv, and terms for viscous stress σV as one dimensional
representation of the viscous stress tensor τϕϕ (Bird et al.,
1960), elastic stress σe = αA2(1−e) derived by Lewis et al.
(2014) with the related evolution of network deformation
e (A.5) and the contractile stress σm generated by the
myosin pulls.
As a new approach, the contractile stress is modeled by
the force generating mass action rate r1 times a force
transmission state χ:

σm = ψ · r1 · χ (2)

The fundamental idea is that the myosin can only bend,
break or compact filaments when on both sides of the
myofilament (Fig. 1b) enough heads are connected to
the F-actin mesh (Wölfer et al., 2016). Otherwise, the
power stroke would not be transmitted sufficiently and
instead move the myosin molecule along the actin filament.
The force transmission should increase the more myosin
heads are bound to the actin filament. Thus, in our
formulation the local force transmission is determined by
the concentration of inactive actomyosin scaled by the
total amount of myosin.

χ =
A-M

A-M +M
(3)

In contrast to other actin models (Jülicher et al., 2007; Ra-
maswamy and Jülicher, 2016) polymerization, depolymer-
ization and, as a consequence, polarity of F-actin filaments
were not taken into account because of an insignificant role
of those processes in the underlying in vitro experiment
Vogel et al. (2013).
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Fig. 1. a: Myosin cross bridge model b: myofilament c: clustering actin cortex d: average ATP concentration and
normalized contractile stress over time e: normalized curves force generation r1, transmission χ and contractile
stress against average ATP conc.

3. RESULTS AND DISCUSSION

Simulation of the nondimensionalized and discretizised
model showed that clustering occurs even when the ATP
concentration (consumed in r2) drops under 5 units ac-
cording with an increase of the contractile stress σm
(Fig. 1c,d). The network clustered gradually by merging of
smaller clusters, pursuant to the periodic initial conditions,
consistent to the experimental observations. Finally, the
contraction ceases after ATP depletion, recognizable by
diminishing of the cluster due to diffusion.
As expected, for high ATP level concentrations the gener-
ated force by r1 is very high . Thus, the majority of myosin
heads are in the unbound state resulting in a poor trans-
mission of force χ and therefore small contractile stress
σm or rather a movement of the myofilament along the
actin fiber. With decreasing ATP concentration the force
transmission is improved accompanied by a decreasing
force generation, resulting in a nearly bell-shaped dose-
response curve for σm (Fig. 1e).
Accordingly, we are able to generate the desired dose-
response relation for ATP and resulting contraction, with
the suggested formulation for contractile stress. In addition
in vitro studies, which observed a movement of myosin pro-
teins along actin filaments, support our new formulation
(Sheetz and Spudich, 1983; Vogel et al., 2013).
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Appendix A. PDE SYSTEM

∂ATP

∂t
= DT

(
1

R

∂

∂R

(
R
∂ATP

∂R

)
+

1

R2

∂2ATP

∂ϕ2

)
(A.1)

∂A

∂t
= −∂(A · V )

∂ϕ
+DA

∂2A

∂ϕ2
− r1 + r2 (A.2)

∂M

∂t
= −∂(M · V )

∂ϕ
+DM

∂2M

∂ϕ2
− r1 + r2 (A.3)

∂A-M

∂t
= −∂(A-M · V )

∂ϕ
+DA

∂2A-M

∂ϕ2
+ r1 − r2 (A.4)

∂e

∂t
= −∂(e · V )

∂ϕ
+ λ(1 − e) (A.5)
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1. INTRODUCTION

There is wide evidence that financial time series are the
outcome of the superposition of processes with heteroge-
neous frequencies. This is true, in particular, for market
return. Indeed, log market return can be decomposed
into uncorrelated components that explain the reaction
to shocks with different persistence. The instrument that
allows us to do so is the Extended Wold Decomposition
of Ortu, Severino, Tamoni and Tebaldi (2017). Hence, we
construct portfolios of these components in order to max-
imize the utility of an agent with a fixed investment hori-
zon. In particular, we build upon Campbell and Viceira
(1999) solution of the optimal consumption-investment
problem with Epstein-Zin utility, by using a rebalancing
interval of 2J periods. It comes out that the optimal
asset allocation involves all the persistent components of
market log return up to scale J . Such components play a
fundamental role in characterizing both the myopic and
the intertemporal hedging demand. Moreover, the optimal
policy prescribes an increasing allocation on more persis-
tent assets when the investor’s relative risk aversion rises.
Finally, portfolio reallocation every 2J periods is consistent
with rational inattention. Indeed, observing assets value is
costly and transaction costs make occasional rebalancing
optimal.

2. SUMMARY

Given a zero-mean weakly stationary time series x =
{xt}t, the Classical Wold Decomposition allows us to write
any xt as an infinite sum of uncorrelated innovations:

xt =
∞∑
k=0

αhεt−h, (1)

where ε = {εt}t is a unit variance white noise and αh are
the so-called impulse response functions. The Extended
Wold Decomposition introduced by Ortu, Severino, Ta-
moni and Tebaldi (2017), instead, decomposes xt into

? This abstract is for the Minisymposium Dynamic models in
economics and management.

uncorrelated persistent components x
(j)
t associated with

specific scales j:

xt =
+∞∑
j=1

x
(j)
t , x

(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)
t−k2j . (2)

Here each detail process ε(j) =
{
ε
(j)
t

}
t

is an MA(2j − 1)

with respect to the fundamental innovations of x and β(j)
k

is the multiscale impulse response associated with scale j
and time-shift k2j . Specifically,

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 (3)

and

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 (4)

for any j ∈ N and k ∈ N0. Moreover, fixed a maximum
scale J , it is possible to write the orthogonal decomposi-
tion

xt =
J∑
j=1

x
(j)
t +m

(J)
t , (5)

where m
(J)
t constitutes a residual component. With a

small abuse of notation we denote x
(J+1)
t = m

(J)
t . The

support {t − k2j} of details ε
(j)
t is sparser and sparser

as the scale raises, conveying the intuition of increasing
duration, together with the higher order ofMA. Therefore,
scale-specific impulse responses β(j)

k capture the sensitivity
of xt with respect to underlying shocks with increasing
durations of 2, 4, 8, . . . periods.

We apply the previous decomposition to the process of
market log returns associated, for instance, to S&P 500
index. We consider an Epstein-Zin investor that chooses
how to distribute her wealth among J + 1 risky assets and
a riskless security, with a periodic rebalancing every 2J
periods. Log returns of these risky assets are supposed
to mimic the persistent components x

(1)
t , . . . , x

(J+1)
t of
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market log returns. Moreover, each x
(j)
t is assumed to

follow an AR(1) process on its own scale:

x
(j)
t+2j = µj (1− φj) + φjx

(j)
t + sjε

(j)
t+2j . (6)

Finally, the fundamental innovations εt are i.i.d. and
distributed as standard normal.

By denoting portfolio loadings by πt(j), the return over
2J periods is, then,

Rp,t+2J =
J+1∑
j=1

πt(j)ext+2J (j)

+

1−
J+1∑
j=1

πt(j)

 e2
Jrf . (7)

The previous assumptions allow the vector of returns

zt =
[
x

(1)
t , . . . , x

(J+1)
t

]′
to follow the V AR dynamics

zt+2J = Φ0 + Φzt + vt+2J , (8)
where Φ0 is a vector, Φ is a diagonal matrix and vt is a
multivariate white noise on the time grid {t − k2J} with
k ∈ Z. The orthogonality properties of the Extended Wold
Decomposition are crucial for obtaining a white noise here.

Our investor has recursive preferences but her utility
depends on the current consumption and the certainty
equivalent associated with the utility 2J periods ahead:

max
{Ct,πt}t=k2J

Ut =
(

(1− β)C(1−γ)/θ
t + βEt

[
U1−γ
t+2J

]1/θ)θ/(1−γ)
sub Wt+2J = Rp,t+2J (Wt − Ct) ,

where 0 < β < 1 is the preference discount factor, γ > 0
is the coefficient of relative risk aversion, ψ denotes the
intertemporal elasticity of substitution (IES) and θ =
(1− γ) /

(
1− ψ−1

)
. Consumption Ct and wealth Wt are

scalars, while the vector πt contains portfolio weights
associated with the J + 1 securities into consideration.

The previous VAR representation of returns allows us to
embed our optimal consumption-investment problem into
Campbell, Chan and Viceira (2003) strategic allocation
theory. In particular, we exploit the affine guess

πt = A0 +A1zt, (9)
paired with the quadratic log consumption-wealth ratio

ct − wt = b0 +B′1zt + z′tB2zt, (10)
where b0 is a scalar, A0 and B1 are vectors and B2 is a
square matrix.

After approximating log return, budget constraint and
Euler equation following the standard derivation with
pace 2J , we determine the approximate optimal asset
allocation, which is driven by myopic and hedging motives:

πt = A0,myopic +A0,hedging

+ (A1,myopic +A1,hedging) zt. (11)

The orthogonality of the Extended Wold Decomposition
ensures that the myopic part of πt(j) depends only on
x

(j)
t . Moreover, if γ = 1 - because, for instance, the investor

has logarithmic utility - the hedging part of πt disappears.
Then, for a myopic investor the weight πt(j) depends only
on x

(j)
t .

Instead, if γ 6= 1, the resulting capital allocation on the
j-th component of market returns depends also on the
other components. In particular, πt(j) depends on x(i)

t with
i 6= j through the term A1,hedgingzt. Hence, the share πt(j)
invested in the component x(j)

t depends on the components
at scales i 6= j just for hedging purposes.

Finally, although the investor’s horizon is 2J , the optimal
capital allocation involves all the components of market
returns, not only the one at scale J .

Once A0 and A1 are determined, we assess that the log
consumption-wealth ratio is actually quadratic in the state
vector zt and we are able to find the optimal b0, B1 and
B2.

We corroborate our analysis by estimating optimal weights
of a portfolio investing in persistent components of S&P
500 index. By employing daily data, we can capture the
impact of two-day shocks on time scale j = 1, (roughly)
weekly shocks on scale j = 2 and so on and so forth.
Moreover, we consider investors with different values of
risk aversions. If γ = 1 the agent is fully myopic and
the weights are all equal across scales. When γ increases,
instead, the investor diversifies within persistent assets and
portfolio loadings to high scales become prominent.
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1. INTRODUCTION

This paper deals with a numerical analysis method based
on time evolution equations for solving nonparametric
boundary shape optimization problems of domain bound-
aries. Shape optimization problems often appear at the
final stage of design.

2. SHAPE OPTIMIZATION PROBLEM

Let Ω ⊂ Rd, d = 2, 3 be a design domain with boundary
∂Ω = ΓN∪ΓD where ΓN is a Neumann boundary and ΓD is
a Dirichlet boundary, D = ∪Ω be a set of design domains.
We denote that n = (n1, · · · , nd) is an outward normal
unit vector on the boundary ∂Ω, 0 is a zero vector and
∇ = (∂/∂x1, · · · , ∂/∂xd) for a point x = (x1, · · · , xd) in
Ω. We define the steady-state heat conduction problem:

−∇ · (q∇u) = b, in Ω,

− (q∇u) · n = p, on ΓN,

u = uD, on ΓD,

(1)

where b ∈ R, p ∈ R and uD ∈ R are given functions, q > 0
is a given constant. In the problem (1), b presents a heat
source in Ω, p presents a heat flux on ΓN, uD presents a
temperature defined on the boundary ΓD and q presents a
thermal conductivity. Using the solution u to the problem
(1), we define the objective function as a thermal resistance
presented by

f0(Ω) =

∫
Ω

budx+

∫
ΓN

pudγ −
∫
ΓD

uD (q∇u) · ndγ (2)

and the constraint function as a volume for domain mea-
sure such as

f1(Ω) =

∫
Ω

1dx. (3)

A shape optimization problem is defined by

min
Ω

{f0(Ω); f1(Ω) ≤ f1(Ω0), u is a solution to (1)} , (4)

where Ω0 ∈ D is a given initial domain with boundary
∂Ω0 = ΓM ∪ ΓF and f1(Ω0) is the initial value of f1 given
as

f1(Ω0) =

∫
Ω0

1dx.

Here ΓM is a moving boundary, i.e., ΓM is deformed in the
computational steps of optimization process and ΓF is a
fixed boundary, i.e., ΓF is fixed in the computational steps

of optimization process.
A Lagrangian function of the problem (4) is given as

L (Ω, u, v0, v1, λ1) = L0(Ω, u, v0) + λ1L1(Ω, u, v1), (5)

where Li (Ω, u, vi) , i = 0, 1 are Lagrangian functions for
fi, i = 0, 1, defined as

Li (Ω, u, vi) = fi +

∫
Ω

{∇ · (q∇u) + b} vidx. (6)

respectively. Here vi, i = 0, 1 are the Lagrange multipliers
for the problem (1).

3. SHAPE DERIVATIVE

In order to solve the problem (4) by gradient based
method, the shape gradient for the objective function f0
and the constraint function f1 with respect to the variation
of Ω are requested. The shape gradient gi, i = 0, 1 can be
obtained using the stationary conditions of Li, i = 0, 1.
The shape gradient of fi, i = 0, 1 are represented as

dLi(Ω, u, vi)

dΩ
=

∂Li

∂u

∂u

∂Ω
+

∂Li

∂vi

∂vi
∂Ω

+
∂Li

∂Ω
(7)

where ∂u
/
∂Ω = δu is a variation of u, ∂vi

/
∂Ω = δvi are

variations of vi, i = 0, 1.
The stationary condition of Li, i = 0, 1 for all variations
δvi of vi, i = 0, 1, such that

∂Li

∂vi

∂vi
∂Ω

=

∫
Ω

{(∇ · (q∇u) + b) δvi}dx = 0, i = 0, 1

are equivalent to the condition that u is the solution to
the problem (1).
The stationary condition of Li, i = 0, 1 for all variations
δu, δu = 0 on ΓD of u such that

∂L0

∂u

∂u

∂Ω
=

∫
Ω

{∇ · (q∇v0) + b} δudx

−
∫
ΓN

δu {p+ (q∇v0) · n} dγ

+

∫
ΓD

{v0 − uD} δ (q∇u) · ndγ = 0,

∂L1

∂u

∂u

∂Ω
=

∫
Ω

{∇ · (q∇v1) δu}dx

−
∫
ΓN

δu (q∇v1) · ndγ

+

∫
ΓD

v1δ (q∇u) · ndγ = 0
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are equivalent to the condition that vi, i = 0, 1 are the
solutions to the following adjoint problems, respectively:

−∇ · (q∇v0) = b, in Ω,

− (q∇v0) · n = p, on ΓN,

v0 = uD, on ΓD,

(8)

−∇ · (q∇v1) = 0, in Ω,

− (q∇v1) · n = 0, on ΓN,

v1 = 0, on ΓD.

(9)

Here, we fix u and vi, i = 0, 1 with the solutions of
problems (1), (8) and (9). By (7), we have the shape
gradients for fi, i = 0, 1:

dL0

dΩ
=

∂L0

∂Ω
= {2bu− (q∇u) ·∇u}n = g0n,

dL1

dΩ
=

∂L1

∂Ω
= n = g1n.

See Azegami (1994).

4. SOLUTION TO THE PROBLEM (4) USING TIME
EVOLUTION EQUATIONS

In order to obtain the solution to the problem (4), we
introduce following time evolution equations:

∂v(t,x)

∂t
= ∇ · (c∇v(t,x))− αv(t,x), in Ω0 × [0, T ],

v(0,x) = 0 in Ω0,

− (c∇v(t,x)) · n = − (g0(t) + λ1g1(t))n on ΓM × [0, T ],

v(t,x) = 0 on ΓF × [0, T ],
(10)

∂ρ(t,x)

∂t
= v(t,x) in [0, T ]× Ω0. (11)

where c > 0, α ≥ 0 and T > 0 are given constants. We
chose sufficiently large T so that

|f0(Ω(T ))− f0(Ω(T − δt))|
/
|f0(Ω(T − δt))| ≤ ε0

holds for a small time step δt and given small constant
ε0 > 0. λ1 denotes a Lagrange multiplier for f1. In this
paper, we set λ1 as

λ1 = −∥g0(t)n∥
∥g1(t)n∥

exp(βf1), ∥·∥ =
√
⟨·, ·⟩, (12)

so that KKT condition g0(T )n+λ1g1(T )n = 0, λ1f1(T ) =
0, λ1 ≥ 0, f1(T ) ≤ 0 holds at the end of optimization
process. Here β > 0 is the given constant for controlling the
violation of constraint function during the optimization
process (See Kawamoto (2013)). We consider the violation
of f1 in the optimization process of computation and chose
β > 0 so that f1 ≤ 0 holds for all t ∈ [0, T ]. The solution
to the problem (4) is obtained by Ω = Ω0 + ρ.

5. NUMERICAL EXAMPLE

We analyze a two-dimensional problem related to a steady-
state heat conduction problem (1). Fig. 1 shows the initial
domain Ω0 with boundary ∂Ω0 = ΓM supΓF. Fig. 2 shows
a design domain Ω with boundary ∂Ω = ΓN ∪ ΓD where
ΓN = ΓN1 ∪ ΓN2. Table 1 shows problem settings of the
problem (10) and (1). Fig. 3 shows the solution u to the
problem (1) in the initial domain Ω0 and the mesh used in
this analysis. Fig. 4 shows the solution u to the problem
(1) in the optimized domain Ω. Fig. 5 shows the history
of objective function and constraint function during the

optimization process. In fig. 5, objective function and
constraint function are normalized by using each initial
values.

Fig. 1. The original domain
Ω0 with boundary ∂Ω0

Fig. 2. A design domain Ω
with boundary ∂Ω

Table 1. Problem settings of the problem (10)
and (1)

Problem Settings

problem (10) T = 1.5, c = 1, α = 0, v2 = 0 on ΓM × [0, T ]

problem (1) q=1, b=0, p=0 on ΓN1, p=−1 on ΓN2, uD=0

equation (12) β = 100

Fig. 3. The solution to the
problem (1) in Ω0

Fig. 4. The solution to the
problem (1) in Ω
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Fig. 5. The history of objective function and constraint
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1. INTRODUCTION

Wolff’s law states that bone morphology evolves according
to their external mechanical loading. Following this law,
researchers have tried to simulate bone shape formation,
especially for trabecular bone, using topology optimiza-
tion (Huiskes et al., 2000). Less attention has been given to
the bone outer shape, composed of cortical bone. However,
trabecular bone and cortical bone are both mainly formed
by osteoblasts and osteoclasts. Therefore, we hypothesize
that the bone outer shape also adapts to the external
forces. The aim of this research is to understand the mech-
anism that generates the bone outer shape by reproducing
the latter using topology optimization.

The mathematical model we developed is inspired by the
fish vertebra. The fish vertebra can be divided into two
parts (Fig. 1): an inner hourglass-like structure and an
outer lateral structure (blue-colored part). Based on our
observations, it turns out that numerous species present
a similar hourglass-like structure but that the lateral
structure strongly depends on the fish species (Fig. 2).
Lateral structures can be classified into two types. The
first type exhibits a ridge structure with one or more
thick bone plates and the second type exhibits a network
structure in which fine bones are randomly oriented.
These differences seem related to the fish motion, i.e. the
swimming type of the fish, and therefore, it is assumed that
lateral structures also evolve based on external loading
conditions. Because fish has the variety of swimming type,
the model we built can produce the structure resistant to
the various movements respectively as well as explain the
bone formation.

Fig. 1. Zebrafish skeleton (left) and a single vertebra
scanned with micro-CT (right). The zebrafish is a
model organism.

⋆ The authors acknowledge CREST and Toyota Central R&D Labs

for their support.

Fig. 2. Varieties of fish vertebra shape.

In standard topology optimization, the density at each
material point is only constrained by the total volume of
material. However, the activity of osteoblast and osteoclast
is more a local phenomenon. Hence, the standard topol-
ogy optimization problem is supplemented with a local
density penalization to mimic this local phenomenon. The
developed mathematical model to study the fish vertebra
formation is hereafter detailed.

2. MATHEMATICAL MODELING

The adopted optimization problem governing the bone
density ρ = ρ(x) distribution is stated as

min
ρ(x)

f [ρ] ≡ f0[ρ] + fstab[ρ] + flocal[ρ[ρ]]

s.t. g[ρ] ≡
∫
Ω

ρ dΩ− V̄ ≤ 0,
(1)

where Ω is the design domain and V̄ the upper bound of
the total volume constraint g[ρ]. The objective function
f [ρ] is composed of three functions that read,

f0[ρ] ≡
∫
Ω

σ̃[ρ] : ε̃[ρ] dΩ, (2)

fstab[ρ] ≡ Cstab

∫
Ω

(∇ρ)
2
dΩ, Cstab > 0, (3)

flocal[ρ[ρ]] ≡ Clocal

∫
Ω

H(ρ[ρ]− ρlocal) dΩ, Clocal > 0. (4)
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f0[ρ] is the total strain energy in the design domain (σ̃ and
ε̃ are the stress and strain tensors). fstab[ρ] is a diffusion
term smoothing the distribution of ρ. flocal[ρ[ρ]] enforces a
penalty to the objective function when the locally averaged
density ρ exceeds the prescribed upper bound ρlocal (H
is the Heaviside function). ρ is obtained by averaging
ρ = ρ(x) with the Helmholtz PDE based filter (Kawamoto
et al., 2011) as:

ρ = ρ(x) : −R2∇2ρ+ ρ = ρ in Ω,

R2 ∂ρ

∂n
= 0 on Γ ≡ ∂Ω; R > 0,

(5)

where R is the filtering radius.

To solve the optimization problem (1), a method based
on a time dependent reaction-diffusion equation (6) is
employed (Kawamoto et al., 2013). Equation (6) is driven
by the sensitivity S, in which the Lagrangian multiplier λ
is introduced as follows:

ρ = ρ(x, t) : m
∂ρ

∂t
= −S in Ω,

Cstab
∂ρ

∂n
= 0 on Γ;

m > 0, S ≡ δF [ρ]

δρ
, F [ρ] ≡ f [ρ] + λg[ρ].

(6)

Solving this optimization problem gives an optimized
structure with respect to the imposed boundary and load-
ing conditions. The penalization term enables to control
locally the feature size.

3. NUMERICAL EXAMPLES

The proposed mathematical model is implemented in
the commercial software COMSOL Multiphysics®. The
mathematics module as well as the solid mechanics module
are used.

A 2-D cantilever beam problem is first solved to demon-
strate the developed method. The results illustrate that
finer features can be obtained by increasing the penaliza-
tion on local densities (Fig. 3).

Fig. 3. Cantilever beam design problem (left) and the
results with small effect (center) and large effect
(right) of local density penalization.

The 3-D design domain of the fish vertebra is illustrated
in Fig. 4. Since the hourglass-like structure is assumed
to be identical for all fish species, the part of the design
domain illustrated in Fig. 4 (on the left) is composed of
bones (ρ = 1) regardless of external forces. The yellow
parts, composed of two wedges of 30◦ spaced by 180◦,
contain nerves and blood vessels, thus no bone is allowed
(ρ = 0). Finally, the design domain is thus composed of the
two external blue parts. Compression forces are applied to
the external surface of the hourglass structure (red-colored
surfaces) in the axial direction (black arrows).

Without local density penalization, thick beams appear
similarly to the ridge structure. Penalizing locally the
density, thinner beams are promoted and they tend to form
a network (Fig. 5).

Fig. 4. Design domain of the fish vertebra.

Fig. 5. Optimization result without local density penaliza-
tion (left) and with local density penalization (right).

4. CONCLUSION

A mathematical model has been developed to generate
fish vertebra using topology optimization combined with
a local density penalization. Numerical results show that
the proposed model can produce both types of lateral
structures, i.e. ridge structure and network structure,
which are similar to the actual fish bone. In the future, it
would be interesting to be able to produce various forms
of fish vertebra by only adjusting a few parameters of the
penalization law.
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1. INTRODUCTION

The approximation of a high-dimensional, discrete or con-
tinuous, quantified or even non-quantified system by a
lower-dimensional well-quantified system occurs in mul-
tiscale numerics, cf. Ames (1969), in lower-dimensional
representations and in modelling, cf. Murray (2008). In
particular in modelling, the small system is interpreted
as a model for the larger system, oftentimes a real-world
problem. Here, we discuss basic ideas by hands of finite
dimensional specifications.
We regard a system of ordinary differential equations

Ẋ = F (X) , X(0) = X ini ∈ Ω ⊆ RN (1)

in X = X(t) ∈ RN with the initial value X ini. In general,
the N equations in (1) are coupled. We aim to approximate
this system by a lower dimensional system in Y ∈ RM ,
M < N and sometimes formally M ≤ N , named

Ẏ = G(Y ) , Y (0) = Y ini ∈ Θ ⊆ RM (2)

with the initial value Y ini. One essential question is wether
Y (t) ≈ ϕ(X(t)) with a link map ϕ : RN → RM is an
appropriate approximation for certain X ini ∈ Ω, Y ini ∈ Θ
and t ∈ [0, T ].

Definition 1. We call the system Ẏ = G(Y ) an exact sub-

system of Ẋ = F (X), if Y (t) = ϕ(X(t)) for all t ∈ [0, T ]
results from Y ini = ϕ(X ini) for all X ini ∈ Ω.

Remark 2. Equation (2) needs not to be a sub-system in
the sense that it is a part of (1). Here, we understand an
exact sub-system as the existence of an exact link map ϕ.

Example 3. Let us regard the harmonic oscillator with
F : R2 → R2 and Ẋ = F (X) = (X2,−X1)T. Even for
this comparably simple system, we find surprisingly many
exact sub-systems. By transition to complex variables,
we find the two sub-systems Ẏ = ±iY = G(Y ) with
ϕ : R2 → C by ϕ(X) = 1

2 (1,∓i)T · X = Y , which are
independent from each other. By

ϕ : X 7→ c(X2
1 +X2

2 ) = Y

with Ẏ = G(Y ) = 0, we generate a sub-system containing
the conservation of energy. In addition,

ϕ : X 7→ t = Y = arctan
−X2

X1

and G = 1 pose an unexpected exact sub-system of the
harmonic oscillator as long as 0 ≤ t < 2π holds.
These four exact sub-systems are part of the model family
of all models of the harmonic oscillator.

2. TERMS, DEFINITIONS AND PROPERTIES

A particularly simple sub-system is induced by a selection
of components of X. Such a selection is a projection

πJ : X = (X1, . . . , XN )T 7→ (Xj1 , . . . , Xjk)T = Y (3)

with a set of indices J = {j1, . . . , jk}. The projection
πJ : RN → RM with M = |J | defines the link ϕ = πJ
between the system in X ∈ RN and a sub-system in
Y ∈ RM .

2.1 Reducibility, separability, adjacency structure

Definition 4. A system (1) is called reducible, if there is
a set J ⊂ I = {1, . . . , N}, J 6= I, forming an exact sub-
system with ϕ = πJ and G(πJX) = πJF (X). A system (1)
is called separable, if ϕ = πI\J forms an exact sub-system,
too.

Reducibility and separability are recognized by the ad-
jacency structure of ∇F . A system (1) is reducible if
∇F ∈ RN×N is an identically reducible matrix for all
X ∈ Ω. It is separable if ∇F has block structure.
Furthermore, ∇F displays the causal dependency struc-
ture of the system (1), i.e. Xi causally depends on Xj , if
the entry (∇F )ji in the j-th row and i-th column of the
matrix ∇F is non-vanishing for some X ∈ Ω.

2.2 Coordinates and concepts

The terms of reducibility and separability depend on
coordinates. In order to achieve a causal structure, which
is as simple as possible, coordinates are sought, in which
the system is reducible or even separable. This search is
formalised by a transformation T : RN → RN with a
bijective diffeomorphism T : X 7→ X ′. The transformed
system in X ′ ∈ RN is

Ẋ ′ = [∇T −1X ′] · F (T −1X ′) = F̃ (X ′). (4)

If there is a transformation so that the system (4) is
reducible or separable, we call the system (1) potentially
reducible or separable, respectively.

2.3 Linear systems

Applied to linear systems Ẋ = AX = F (X) with A ∈
RN×N , we look for a linear sub-system Ẏ = BY = G(Y )
with B ∈ RM×M and initial values as mentioned above.

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 61-62, DOI: 10.11128/arep.55.a55243 61

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



A spectral decomposition induces a transformation T :
RN → RN given by

X ′ = T X := V −1X,

where V ∈ CN×N contains the eigenvectors of A with
AV = V Λ. Then, (4) is Ẋ ′ = ΛX ′, where Λ ∈ CN×N is
the Jordan matrix of eigenvalues.
In case of a non-diagonalisable matrix A, the transformed
system separates into Jordan blocks. Each Jordan block
represents an exact sub-system, not further separable. Let
us regard an upper tridiagonal r×r-Jordan block between
the rows m− r + 1 and m in Λ. Then, all projections

ϕ = πJT : X 7→ (X ′m−j , . . . , X
′
m)T = Y

with 0 ≤ j ≤ r − 1 induce exact sub-systems. An amount
of k Jordan blocks is equivalent to k independent sub-
systems. In particular the system Ẋ ′ = ΛX ′ is separable
if Λ contains more than one Jordan block, because they
depict sub-systems that can be described independently
from each other.
In case of a diagonalisable A, the matrix Λ is diagonal.
Hence, the system Ẋ ′ = ΛX ′ is completely separable.
All projections ϕ = πIT : X 7→ Y with any set of
indices I = {i1, . . . , im} ⊆ {1, . . . , N} induce exact sub-
systems. In contrast to the non-diagonalisable Jordan case,
any selection of components is admissible, and the system
Ẋ ′ = ΛX ′ has a very simple causal structure.

{X ′
1
, X ′

3
}{X ′

1
, X ′

2
} {X ′

2
, X ′

3
}

{X ′
1
, X ′

2
, X ′

3
}

{X ′
1
} {X ′

2
} {X ′

3
}

∅

(a) diagonal

{X ′
1
, X ′

2
} {X ′

2
, X ′

3
}

{X ′
1
, X ′

2
, X ′

3
}

{X ′
2
} {X ′

3
}

∅

(b) Jordan

Fig. 1. Families of exact linear sub-systems for N = 3.
Left: diagonalisable A, full family. Right: Two Jordan
blocks, one with r = 2, m = 2, and one with r = 1,
m = 3 with separation in {X ′1, X ′2} and {X ′3}. Thus
{X ′1} is not a stand-alone exact sub-system.

2.4 One-dimensional situation

In the one-dimensional case with N = M = 1, we
have scalar quantities X and Y . Consequently, we find
F,G : R → R and the link ϕ : R → R. So the systems
(1) and (2) are one-dimensional autonomous ordinary dif-
ferential equations. Solutions of such equations always are
monotonous. Furthermore, differentiable and monotonous
functions R → R can be transformed into each other
by a non-linear scaling of the domain and co-domain.
Consequently, every one-dimensional system is an exact
sub-system of every one-dimensional differential equation
according to Def. 1. The impact of this surprising obser-
vation in modelling will be analysed in further research.

2.5 Noether’s theorem and conserved quantities

Noether’s theorem explains the connection between the ex-
istence of conserved quantities and the symmetry of a sys-

tem under transformation of variables, cf. Boccaletti and
Pucacco (2001). The invariance under spacial translations
leads to momentum conservation, while the conservation of
energy results from the invariance under time translation,
as in Example 3. In the formalism introduced here, a
conserved quantity Y of (1), like in Noether’s theorem,
is described by an exact sub-system in (2) with M = 1

and G = 0 what implies Y ∈ R with Ẏ = 0.

3. THE MODELLING POINT OF VIEW

We have introduced a conceptual framework that describes
the approximation of Ẋ = F (X) by lower-dimensional

sub-systems Ẏ = G(Y ). The modelling point of view takes
the system (1) as a real-world system, we want to describe
by a model (2). In the context of modelling, we interpret
the transformation T : X 7→ X ′ as a choice of terms
or concepts, that induce a well-arranged causal structure
that is as simple as possible. While describing physical
or biological systems, scientists always search for simple
causal dependencies and simple descriptions, cf. Machamer
and Silberstein (2002). The projection πJ induced by
(3) represents the selection of components to consider in
the model. The presented conceptual framework fits into
the process of modelling and forms an approach for its
formalisation.

4. OUTLOOK

An intuitive approach to modelling starts with an identifi-
cation of basic mechanisms. In order to model a system (1),
we assume separated and independent mechanisms. These
mechanisms are represented by functions Fi : RN → RN

in F = α1F1 + . . .+ αkFk with fixed α1, . . . , αk ∈ R. This
leads to the system equation

Ẋ = α1F1(X) + . . .+ αkFk(X). (5)

It is determined, which mechanism leads to which change
of the system (5). One question to analyse is, how the
terms of reducibility and separability fit to the separation
of mechanisms and the resulting linear combination of
different Fi.
Another point of view might interpret the αi as param-
eters, defining different models to identify. The resulting
parameter identification is a model identification in order
to find a best model of a real-world problem and thus a
best approximation of the system (1).
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1. INTRODUCTION

Mechanical actuators the operating principle of which is
based on the deformation of a shape-memory alloy can
create high forces while the overall actuator size is com-
parably small. Often these kinds of actuators are operated
in an on-off mode, only. Nonetheless, a continuous oper-
ation is also possible, which is usually controlled using
heuristic linear or nonlinear controllers. In this article a
flatness-based open-loop control of this kind of actuators
is proposed using a simple physically inspired model of the
alloy.

The operating principle of shape-memory alloy actuators
is the diffusionless transition between different metallic
phases. Depending on the phase, the geometric shape of
the actuator changes thus leading to relatively large defor-
mations. What metallic phase the alloy prefers depends on
the current temperature and the mechanical stress (there
are magnetic alloys, too, but these are not considered
here). For a nickel titanium alloy (NiTi), there is an
austenitic phase, which is stable at high temperatures,
and a martensitic phase, stable at low temperatures. Be-
cause of the shape of the crystal cells, martensite forms in
twins of different orientation (Wang and Sehitoglu (2014)),
when the alloy is cooled. Stretching the cold alloy results
in a shift of the twin plane, which looks like a plastic
deformation from the macroscopic point of view, but is
a diffusionless process. The process can be reversed by
heating the alloy, which turns the crystal in the austenitic
phase again, so that the previous shape results.

To this end, actuators formed as thin wires are considered,
which can only afford tension forces in one direction.
Thus, the martensite cells will orientate in a way that
minimizes the strain energy and different orientations
are not subject to the considerations, here. This way,
one can regard the phase fractions xA of austenite and
the fractions x+ and x− of representative martensite
phases, only (Müller and Seelecke (2001)). In addition,
the following simplified assumptions are made: The wire
is always loaded by a tension force f(l, l̇, . . .) that can
be expressed by the wire length l and its derivatives.
This function is given by the mechanical system attached

? The explanation of the ideas behind the material model by Prof.
Seelecke is gratefully acknowledged.

to the wire. The mass, and therefore all inertial forces,
of the wire can be neglected. The wire shall have a
homogeneous temperature, spatially distributed effects are
not considered yet. Thus, a wire of spatially constant
cross section A, volume V , and length l = l0(1 + ε) is
considered, where l0 is the length in the austenitic phase
under no load and ε is the strain. Note that the cross
section A depends on both the phase fraction and the
strain, because of the volume preserving phase transition
and the elastic tension of the compressible material, while
the volume depends on the elastic component of the strain
only. Polycrystalline effects are neglected and the wire is
described by stacked layers of martensite and austenite
with the fractions x+ = x and xA = 1 − x, respectively.
Since the wire is assumed to be always loaded, only one
martensitic phase is considered.

2. MATERIAL MODEL

To explain the hysteretic behavior of the shape-memory
alloy, a free energy model was developed in Müller and
Seelecke (2001), which has been used in many other
works. In this model, the (Helmholtz) free energy F =
U − TS as a function of the temperature T and the
strain ε is considered. Here, U denotes the internal energy
and S the entropy. A thermodynamic system tends to
minimize the free energy. Considering the material tension
with respect to austenite, the martensitic phases can be
regarded to have a strain ε±, so that the (linear) stress-
strain relation is σA = EAε and σ± = E± (ε− ε±) for
austenite and martensite, respectively, while E denotes the
corresponding Young’s modulus. Therefore, the free energy
has minima at the specific strains, if the phases are stable
at the temperature T . At high temperatures, the entropy
term dominates and only the austenitic phase is stable (see
Figure 1a)). As the temperature decreases, minima at the
martensitic phases occur, but the energy barrier prevents a
phase transition (Figure 1b)). If the temperature decreases
further, the energy barrier gets smaller so that the alloy
transforms to the martensitic phase (Figure 1c)). As the
material is heated again, there is an energy barrier to the
austenite phase, which explains the hysteresis.

For an alloy under tension stress σ, the free enthalpy
G = F − ∂εUε is minimized. To find the term ∂εU , the
Gibbs fundamental equation dU = T dS+ dW conforming
to Kluge and Neugebauer (1994) with the work term
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dW = f dl = σAl0 dε = σ V
1+ε dε

in combination with the total derivative dU = ∂SU dS +
∂εU dε can be used to find

∂εU = σ V
1+ε .

The additional term ∂εUε in the free enthalpy explains
why only one martensitic phase is formed when cooling a
wire under tension.

This phase transformation process is assumed to have
a rate that depends on the temperature and the height
∆G(σ, T ) of the energy barriers, which are different for the
different transitions A+ from austenite to martensite and
+A from martensite to austenite. There, the quantities T
and ∆G occur in the argument of an exponential function.
For an explanation the reader is referred to Müller and
Seelecke (2001). Thus, one has quasilinear differential
equations

τ ẋA = x+p+A(T, σ)− xApA+(T, σ)

τ ẋ+ = xApA+(T, σ)− x+pA+(T, σ)

for the phase fractions, which obviously respect the alge-
braic condition xA + x+ = 1 and can be reduced to

τ ẋ = (1− x)pA+(σ, T )− xp+A(σ, T ). (1)

Since the proposed time constant τ is very small, singular
perturbation theory may be used to come up with alge-
braic equations instead, neglecting the very fast dynamics.

To complete the actuator model, an equation for the
heating power P is required. The following considerations
are easier to understand when working with the length l
and force f of the wire. Since U̇ = Q̇+f l̇ for the change of
the internal energy, for the enthalpy H = U − fl one has
Ḣ = Q̇ − lḟ . On the other hand H = xHM + (1 − x)HA

holds for the enthalpy, where HM and HA is the enthalpy
of the whole wire, as if it had only one metallic phase.
Further

ḢM,A = ∂THM,AṪ + ∂fHM,Aḟ ,
while ∂fHM,A = −l. Comparing the two equations for the

derivative Ḣ, one finds

Ḣ = ẋ (HM −HA)− lḟ + (x∂THM + (1− x)∂THA) Ṫ

= Q̇− lḟ ,
which yields

Q̇ = (x∂THM + (1− x)∂THA) Ṫ + (HM −HA) ẋ. (2)

3. DIFFERENTIALLY FLAT SYSTEM

Combining the shape-memory alloy wire model with the
mechanically system providing an external force (a spring
for instance) results in a differentially flat system with
the wire length l as a flat output, as will be shown next.
Given the length l0 of the unloaded wire in austenitic
phase as a parameter, one has the relation l = l0 (1 + ε)
and that knowing l the strain is known, too. From the
mechanical system itself one directly computes the tension
force f = f(l, l̇, . . .).

To compute the stress σ = f
A and the phase fractions the

cross section A of the wire is required first. Under the
assumptions above, one has a volume preserving tension
due to the phase transition next to an elastic tension due
to stress. The latter effect contributes a strain

ε̄ = σ
(

1−x
EA

+ x
EM

)

a)

ε

F ε+

b)

ε

F ε+∆G

c)

ε

F ε+

Fig. 1. Free energy F (T, ε). Sections are shown for different
temperatures T .

so that ε = xε+ + ε̄ for the composite strain. The elastic

tension scales the cross section by (1− νε̄)2 ≈ 1−2νε̄ with
the transverse deformation constant ν so that

A = A0
(1−νε̄)2
1+xε+

for the cross section. These equations can be solved for the
phase fraction x and the stress σ, given the strain ε and
the force f .

Now, in the rate equation (1) the quantities computed so
far as well as the derivative ẋ of the phase fraction are
substituted to solve this equation for the temperature T .
Using (2) and differentiating T then allows to express the

control input, viz the heating power P = Q̇. This way,
given any sufficiently smooth trajectory t 7→ l(t), allows
one to compute the corresponding control input P (t).

The step of computing the temperature requires some
attention. The monocrystalline model suggests that, due
to the large negative exponents, there is almost no phase
transition until a critical temperature or strain reached.
Inverting the equations directly results in very large heat-
ing powers. In practice, such a behavior is not observed.
A polycrystalline extension of this model as proposed in
Heinze (2004) will allow to address this problem.

One should also note that the wire can be easily heated
by forcing an electrical current through it, while there is
usually no way to cool it actively. Negative values of Q̇ are
achieved by convection that depends on the temperature
and geometry of the wire, which are known from t 7→ l(t).

Since the small wire is fixed at its ends, there are very large
heat sinks, which call for a spatially distributed model.
Such a model might lead to much better coincidence
between simulation results and experiments, in return
yielding more accurate control behavior.
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1. INTRODUCTION

Many infections or diseases that pose a public health
threat have a zoonotic origin, i.e., are transmitted from
animals to humans by contact with infected animals.
Verotoxin-producing Escherichia coli (VTEC) is an ex-
ample of a zoonotic foodborne pathogen where cattle can
act as a reservoir, see Newell et al. (2010). Livestock
movements are the primary transmission route for trans-
ferring VTEC infections between cattle herds, Nielsen
et al. (2002). EU regulations require member states to
keep national databases of all bovine animals and it is
therefore possible to develop realistic large-scale disease
spread models that incorporate the transport network to
better understand the transmission of zoonotic infections
in the cattle population. Although mainly inspired by
zoonotic diseases and models driven by livestock data, our
discussion is of entirely general character and applies to
arbitrary epidemiological models. We have implemented a
framework for stochastic disease spread simulator on net-
works in the software SimInf, see Widgren et al. (2016a),
which is a C compiled extension to the programming lan-
guage R available through the Comprehensive R Archive
Network (CRAN). With SimInf and data with detailed
information about the movement of the Swedish cattle
population and bacterial testing at multiple sites we can
perform Bayesian parameter inference on national scale
epidemics.

2. EPIDEMIOLOGICAL MODELING

The SISE-model consists of the two compartments sus-
ceptible (S) and infected (I) and an environmental com-
partment (E) representing an infectious pressure from free-
living pathogens. The infection transmits indirectly from
infected to susceptible individuals through the local en-
vironment, contaminated by infected individuals. Within
each herd i, the SISE model has the following two state
transitions,

Si
υϕi−−→ Ii

Ii
γ−→ Si

}
, (1)

where υ is the indirect transmission rate of the environ-
mental infectious pressure, and γ is the recovery rate from

the infection. Moreover, ϕi(t) is the concentration of the
local environmental-infectious pressure in herd i, evolved
as

dϕi(t)

dt
=

αIi(t)

Si(t) + Ii(t)
− β(t)ϕi(t), (2)

where α is the average shedding rate of bacteria to
the environment per infected individual, while the time-
dependent function β captures the decay and removal of
bacteria. The model can be extended to include multiple
compartments, such as different age groups in the suscep-
tible and infected compartments, see Bauer et al. (2016);
Widgren et al. (2016b). With the inclusion of observations,
we implement (1) and (2) as stochastic simulations on a
connected network in SimInf, see Engblom and Widgren
(2017); Bauer et al. (2016).

The data we have available contains a total of 18,649,921
reports with information about; first, the date and the
node for birth events, second, the date, the source, and
destination node for any movements, and third, the date
for slaughter or death, Nöremark et al. (2011). Each unique
node identifier (n = 37,221) in the data corresponds to
a single geographical location where animals are kept,
and could, e.g., correspond to a farm building or pasture
distributed across the entire Sweden.

3. BAYESIAN PARAMETRIZATION

We consider a postulated truth in the form of a time-
dependent stochastic process X(t) = X(t, θ), for some
parameter θ. The density for this process is denoted by
P
(
(x, t)|(x′, t′); θ

)
= P

(
X(t) = x|X(t′) = x′; θ

)
, and we

consider throughout this work that the true density is
computationally intractable but — mainly for convenience
— is Markovian. We are given a set of observations (xi) =
(xi, ti) ∼ X(ti), and the task is to estimate the unknown
parameter θ.

In exploring the posterior density P(θ|x) ∝ P(x|θ),
likelihood-based inference methods are not viable and
other methods need to be advised. We consider two
likelihood-free inference methods, first, Approximate
Bayesian Computations (ABC), see Beaumont et al.
(2002), and second, Synthetic Likelihood Markov chain
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Monte Carlo (SLMCMC) as in Wood (2010). Both meth-
ods generate simulated data (zi(θ

′)) ∼ X(ti, θ
′) and com-

pare it with the observed data as a substitute for the
likelihood.

In ABC one compares the summarized versions of
{(zi), (xi)}, the summary statistics {S(z), S(x)}, using a
distance measure, e.g., the Euclidean norm. If the distance
is smaller than a tolerance ε, the proposed parameter θ′

is accepted. The ABC method thus gives the approximate
posterior distribution defined as

Pε(θ|S(x)) ∝
∫
X
P(z|θ′)P(θ′)IAε,x(z)dz

Aε,x(z) = {z ∈ X ; ||S(z)− S(x)|| < ε}.
(3)

The choice of the acceptance tolerance ε will define how
close to the true posterior the approximation is. As ε→∞
the sample distribution is the prior: Pε(θ|S(x)) → P(θ),
and as ε → 0 the approximation will converge to the
posterior Pε(θ|S(x))→ P(θ|S(x)), see Wilkinson (2013).

The other method referred to as SLMCMC considers each
set of simulated summary statistics to be an observation of
a multivariate normal distribution S(·) = s ∼ N (mθ,Σθ),
where mθ is the mean and Σθ is the covariance. When
assuming normality, we utilize an auxiliary model Z and
will, in turn, be able to observe the auxiliary model’s
posterior density PZ,η(θ|s). The accuracy of the observed
posterior density depends on the number of observation η
of s and the validity of the assumption of the auxiliary
model Z being descriptive of the postulated truth. We
construct the synthetic log-likelihood as

pZ,η(s|θ) = −1

2
(s− m̂θ)

>
Σ̂−1θ (s− m̂θ)−

1

2
log |Σ̂θ|, (4)

where m̂θ and Σ̂θ are estimates of the mean and covari-
ance. We then explore the approximate posterior density
using (4) in a likelihood-based Markov chain Monte Carlo
method.

In Figure 1, we illustrate a proof of concept for the two
methods. We conduct the parameter inference on a Ge-
ometric Brownian Motion, for which the likelihood func-
tion is known, and we present the results from ABC and
SLMCMC together with the likelihood-based Metropolis-
Hastings algorithm, Hastings (1970), i.e., the best attain-
able posterior in this setting. We are currently applying
these likelihood-free methods to the SISE-model using
series of measurements
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1. INTRODUCTION

In typical stereotactic neurosurgery, an entry point on the
skullcap is determined from which the target region inside
the brain is approached on a straight line, see, e.g. Rahman
et al. (2009). MRT or CT data provide information on
one or multiple target points in the brain, which the
cannula has to reach during operation, as well as on critical
regions inside the brain that should not be penetrated.
Stereotactic neurosurgery requires careful a priori design
and planning of cannula trajectories.

Here, we focus on a novel approach to mitigate negative
side effects due to the penetration of brain tissue. To
this end, we propose the usage of a cannula that is
composed of several pre-curved nickel-titanium tubes with
decreasing diameter such that their construction allows for
intertwining, see Fig. 1. Then, surgery planning includes
choosing an entry point on the skullcap, the cannula
design, e.g. how many and which type of cannula, and the
computation of control commands for the individual tubes
of the cannula. Using actively deformable cannulas offers
the possibility to reach multiple target points through one
entry point and may even allow to reach a target point in
view off critical regions inside the brain.

However, actively deformable cannulas give raise to an
infinite number of possible tube trajectories, such that it
is inevitable to support surgery planning by mathematical
optimization.

2. MODELING & OPTIMIZATION

We model the design and planning problem as a con-
strained optimization problem. The optimization variables
can be partitioned into design and control variables, see
Fig. 1. While the former have to be fixed before the
cannula is built, the latter can be adjusted later on, e.g.
after parameter identification or by model-based control.
Finding steering curves for the individual tubes of the

cannula can be modeled as an optimal control problem;
details are presented in the following.

Kinetic/Kinematic Model: We develop kinetic and
kinematic models, in which the configuration of the can-
nula and its history is decisive while the actual speed of
realizing that path can be ignored. Hence, time does not
play a role. However, in order to take the configuration
and its history properly into account, we artificially in-
troduce a time parameter. Within robotics terminology,
our planning problem is thus between a path and a trajec-
tory planning problem. Ordinary differential equations are
derived, whose solution trajectories are absolutely contin-
uous, which ensures smoothness of the computed path for
the cannula.

Additional Constraints: Both technical boundary con-
ditions, such as parameter ranges, mechanical material
characteristics (cf. Greiner-Petter and Sattel (2017)), and
medical aspects, such as intolerable lateral movements of
the cannula or the structure of the brain, have to be taken
into account as equality or inequality constraints on tube
trajectories.

Objective Function: We identified several different ob-
jective functions of interest. The length of the fully ex-
tended cannula, i.e. when the target region is reached,
should be minimized, which corresponds to a classical
Mayer-term in an optimal control problem. Moreover,
torsion of the elastic tubes may cause violations of the
follow-the-leader behavior, which leads to undesired lat-
eral movements of the cannula and, thus, severe damage
of tissue and therefore, has to be minimized. A similar
behavior can be observed due to hysteresis.

These objectives are potentially conflicting optimization
criteria. Thus, they have to be considered in a multi-
objective optimization framework and e.g. handled by
scalarization methods. A set of Pareto optimal solutions,
i.e. optimal compromises of the considered optimization
criteria, can greatly support decision making by allowing
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controls:
translation & rotation

cannula parameters:
number, ordering,

curvature, diameters,
material

Fig. 1. Picture of surgical instrument with optimization variables indicated: parameters of the cannula and controls.

the surgeon to choose in dependence of the individual
patient.

3. RELATED WORK

State-of-the-art surgery techniques are based on straight
cannulas that are steered via a stereotactic frame. How-
ever, recently, research has been done on actively de-
formable cannulas which provide more degrees of freedom
in design and control Burgner-Kahrs et al. (2015). In this
case, the mechanical model gains complexity, since inter-
action between the tubes have to be considered Greiner-
Petter and Sattel (2017).

Trajectory planning for medical applications is often ad-
dressed by stochastic, sampling-based, or heuristic op-
timization approaches, e.g. the Nelder-Mead method in
Bergeles et al. (2015) or rapidly exploring roadmaps in
Alterovitz et al. (2011); Torres and Alterovitz (2011). Fur-
ther, Monte-Carlo Simulations have been used in Burgner-
Kahrs et al. (2014) for workspace characterization. Ap-
proaches to collision avoidance for brain regions have been
considered in Lyons et al. (2009, 2010); Alterovitz et al.
(2011); Torres and Alterovitz (2011). In Anor et al. (2011),
simultaneous trajectory planning and cannula design is
presented. However, the approach does not use gradient
information but pattern search methods. Global solutions
are obtained via varied initial guesses. Optimal planning
for actively deformable cannulas by gradient-based tech-
niques has only been considered for simple kinematic can-
nula models in Lyons et al. (2009).

4. IMPLEMENTATION & OUTLOOK

Our approach to the design and planning problem of ac-
tively deformable cannula is to use model-based optimiza-
tion, more concretely, gradient-based nonlinear optimiza-
tion techniques. The optimal control problem is discretized
by transcription methods, see, e.g. Gerdts (2011). Medical
and technical constraints are added to the problem.

The development of structure-exploiting efficient optimiza-
tion software, e.g. WORHP, Büskens and Wassel (2012),
nowadays allows to use gradient-based optimization tech-
niques, as opposed to sampling heuristics, even in highly
complex applications with many variables and constraints.
Here, local optimality of solutions can be guaranteed and
the numerical solution offers further information in terms
of sensitivities, which can be used to study robustness
properties of solutions, for instance. Robustness is of ut-
most importance for the considered application in order to
cope with modeling errors and external disturbances.

In future, this contribution will be part of a trajectory
planning tool for a mechatronic instrument for stereotactic
neurosurgery.
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1. INTRODUCTION

During the last decades (numerical) simulations based
on partial differential equations (PDEs) have consider-
ably gained importance in engineering applications, life
sciences, environmental issues, and finance. However, es-
pecially when multiple simulation requests or a real-time
simulation response are desired, standard methods such
as finite elements (FE) are prohibitive. Model reduction
approaches such as the reduced basis (RB) method, which
we will consider here, have been developed to tackle such
situations (see for instance Haasdonk (2017); Quarteroni
et al. (2016); Hesthaven et al. (2016) for an overview). The
key concept of the RB method is to prepare a problem-
adapted low-dimensional subspace of the high-dimensional
(FE) discretization space in a possibly expensive offline
stage to realize a fast simulation response by Galerkin pro-
jection on that low-dimensional space in the subsequent
online stage.

To assess the approximation error caused by the RB
method in the online stage a reliable and efficient a posteri-
ori error estimator has been derived in Veroy et al. (2003).
However, for inf-sup stable problems such as acoustics
problems the estimation of the inf-sup constant still poses
a challenge and the existing methods often result in rather
pessimistic results and thus pessimistic error bounds. We
propose a constant-free, probabilistic a posteriori error
estimator that does not require to estimate any stability
constants and is both reliable and efficient at (given) high
probability. Here, we extend the approach in Cao and
Petzold (2004); Homescu et al. (2005), where the solution
of an adjoint problem with random conditions at the final
time is employed to estimate the approximation error for
ordinary differential equations.

2. THE REDUCED BASIS METHOD FOR INF-SUP
STABLE PARAMETRIZED PDES

2.1 Problem setting

Let D ⊂ Rd, d = 1, 2, 3 be a bounded Lipschitz domain,
P denote the set of admissible parameters, and introduce
a Hilbert space H1

0 (D) ⊂ X ⊂ H1(D). Moreover, we
introduce a linear operator A(µ) : X → X ′ that is inf-
sup stable and bounded, i.e.

0 < β ≤ β(µ) := inf
v∈X

sup
w∈X

〈A(µ)v, w〉
‖v‖X‖w‖X

and (1)

γ(µ) := sup
v∈X

sup
w∈X

〈A(µ)v, w〉
‖v‖X‖w‖X

≤ γ <∞, (2)

where X ′ denotes the dual space of X and 〈·, ·〉 the duality
pairing.

We consider the following parameter-dependent PDE: For
any given µ ∈ P find u(µ) ∈ X such that

A(µ)u(µ) = f(µ) in X ′, (3)

where f(µ) ∈ X ′ is a given continuous linear form.

2.2 The high-dimensional discretization

Next, we introduce a conforming high-dimensional (FE)
space XN ⊂ X of dimension N and a so-called truth
solution uN (µ) that is defined as the solution of

A(µ)uN (µ) = f(µ) in XN ′. (4)

Note that in order to simplify the presentation we do not
introduce suitable discrete linear operators as we believe
the respective definition to be clear from the actual setting.

2.3 The reduced basis method in a nutshell

We assume that we have constructed an RB space XN :=
span{φ1, . . . , φN} in the offline stage say via a greedy
algorithm as introduced in Veroy et al. (2003), relying on
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the high-dimensional discretization. We may then define
an RB approximation uN (µ) ∈ XN as the solution of

A(µ)uN (µ) = f(µ) in XN ′. (5)

Note that thanks to a suitable offline/online-decomposition
the computation of uN (µ) in the online stage does not scale
in the dimension N of the high-dimensional discretiza-
tion (see for instance Haasdonk (2017); Quarteroni et al.
(2016); Hesthaven et al. (2016) for details).

To assess the approximation error ‖uN (µ)−uN (µ)‖X one
may introduce the residual

r(µ) := f(µ)−A(µ)uN (µ) ∈ XN ′. (6)

It is then straightforward to show that we have

‖uN (µ)− uN (µ)‖X ≤
1

β(µ)
‖r(µ)‖XN ′ . (7)

While the dual norm of the residual can be efficiently
computed via the Riesz representation, estimation of β(µ)
remains a challenge. The Successive Constraint Method
introduced in Huynh et al. (2007) yields a lower bound for
β(µ) which may however be rather pessimistic.

3. A RANDOMIZED A POSTERIORI ERROR
ESTIMATOR

To derive a randomized a posteriori error estimator we
rely on results similar to the restricted isometry property
employed in compressed sensing. In detail, we introduce
a matrix B ∈ RK×N whose entries are mutually inde-
pendent standard Gaussian random variables. Then, for a
vector x ∈ RN we have that for a given ε ∈ R, ε < 1 the
result

(1− ε)‖x‖22 ≤ ‖Bx‖22 ≤ (1 + ε)‖x‖22 (8)

holds true at a (given) probability of at most 1 − δ if
K ≥ K̄(δ, ε) (see for instance Vershynin (2012)). Here,
‖ · ‖2 denotes the Euclidean norm. Note that in contrast
to our approach the authors of Cao and Petzold (2004);
Homescu et al. (2005) employ the small sample statistical
method as proposed in Kenney and Laub (1994) that relies
on random vectors which are uniformly distributed on the
sphere SN−1.

Inspired by the results in Cao and Petzold (2004); Home-
scu et al. (2005) we introduce dual problems

A∗(µ)ψ
i
(µ) = B(i,:), i = 1, . . . ,K, (9)

where A∗(µ) denotes the stiffness matrix associated with
the adjoint operator A∗(µ) of A(µ) and B(i,:) denotes the
i-th row of the matrix B. We may then use the dual
solutions ψ

i
(µ) to define a probabilistic a posteriori error

estimator that is a reliable and efficient bound of the error
‖uN (µ)−uN (µ)‖X at given probability 1− δ. However, as
solving (9) for one i is as expensive as solving the primal
truth problem (4) this estimator is not computationally
feasible in the online stage.

In order to obtain an a posteriori error estimator that
can be computed in the online stage in a complexity that
does not depend on the dimension of the high-dimensional
space XN , we also introduce an RB approximation of the
dual problems (9). Here, we propose and compare different
computational strategies for the generation of the dual RB
space. If the RB approximation errors of the dual problems
are small, the error ‖uN −uN (µ)‖X can be bounded, with

high probability, from below and above by this online-
efficient a posteriori error estimator times a given constant.
For more details see Smetana et al. (2018).
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Fig. 1. Capsule-type robot. M – mass of the housing, m –
mass of the core, c – spring rate, Fe – control force, µ
– coefficient of dry friction

1. INTRODUCTION

A capsule robot (capsubot) is a locomotion system that
can move in a resistive environment without external
propelling devices (legs, wheels, caterpillars, fins, water
screws, etc.) due to the motion of internal bodies and
interaction of the housing with the environment.

The robot in current study consists of a rigid body (hous-
ing) and an electromagnetic (solenoid-type) drive located
inside the housing. The drive involves an electromagnetic
coil (solenoid) that is rigidly attached to the housing and
an internal body(core); the core is made of a ferromagnetic
material and can move inside the solenoid along its axis.
The core is attached to the housing by a spring. The
solenoid’s axis is parallel to the axis of the housing. The
housing interacts with a resistive environment in which
the robot is moving. The robot is actuated by means of
a magnetic force that acts on the core when an electric
voltage is applied across the solenoid. The drive is designed
so that the magnetic force acts in one direction and tends
to pull the core inside the coil. The core returns to its
initial position due to the spring. The robot moves on a
horizontal plane along a straight line parallel to the axis
of the robot’s housing. The dynamics of the electric circuit

? The research work reported here was partly supported by the
Deutsche Forschungsgemeinschaft (Grant ZIM 540/19-2) and the
Russian Foundation for Basic Research (Grant 17-51-12025)

of the solenoid is not taken into account. The schematic of
the system described is shown in Fig. 1.

This model was suggested and derived in Bolotnik et al.
(2016). The current study extends the cited paper with
experimental investigations.

2. MATHEMATICAL MODEL

Let M denote the mass of the housing together with the
solenoid, m the mass of the core, Fe the force applied
to the core by the solenoid, Ffr the force with which the
environment resists the motion of the housing, c the spring
rate, x the coordinate that identifies the position of the
housing’s center of mass relative to a fixed (inertial) ref-
erence frame, ξ the coordinate that identifies the position
of the core’s center of mass relative to the housing. The
variables x and ξ are measured along the line of motion of
the robot. The coordinate ξ is chosen so that the spring
is unstrained for ξ = 0. We assume that the resistance
force Ffr acting between the housing and the environment
is the dry friction force that obeys Coulomb’s law and µ
is the coefficient of dry friction of the housing against the
supporting plane. Let X denote the center of mass:

X(t) = x(t) +
m

M +m
ξ(t), (1)

By applying Newton’s second law separately to the hous-
ing and to the core and using (1), we obtain the governing
equations for the system under consideration in the fol-
lowing form:

(M +m)Ẍ = Ffr

(
Ẋ − m

M +m
ξ̇

)
,

Mm

M +m
ξ̈ + c ξ = Fe −

m

M +m
Ffr

(
Ẋ − m

M +m
ξ̇

)
.

(2)

Consider the force generated by the drive as a periodic
piecewise continuous function:

Fe =


F0,

{
t

T

}
< τ,

0,

{
t

T

}
≥ τ ,

(3)
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where T is the period, F0 is a positive constant that has
a dimension of force, and τ is a dimensionless positive
constant from the interval (0, 1). The parameter τ , called
the duty cycle, identifies the fraction of the period, during
which the control force is not equal to zero. Curly brackets
denote the fractional part of the expression enclosed in
them.

3. SIMULATION AND EXPERIMENTAL RESULTS

The basic content of this section is the analysis of the
dependence of the average velocity of the robot on the
excitation parameters T and τ .

The parameters of the experimental setup in terms of
the mathematical model are provided in Table 1. These
parameters are used for the simulation.

Table 1. Parameters of the system

Parameters Notatation and value

Mass of the housing M = 0.193 kg
Mass of the core m = 0.074 kg
Stiffness of the spring c = 256.23 Nm−1

Maximum value of the force Fe F0 = 1.25 N
Dry friction coefficient µ = 0.29

The results will be presented in dimensionless variables.
Instead of V , t, and T , we will use the variables V c/(F0ω),
ωt, and ωT , respectively, preserving the previous notation
for the normalized variables. The time scaling parameter

is defined by ω =
√

c(M+m)
Mm .

In the current study it is expected that the experimental
and simulated data will not match quantitatively. This
significant discrepancy could be accounted for by the
fact that in the computational model, we ignored the
dynamics of the electric circuit of the solenoid. However,
the qualitative effects are expected to be observed.

3.1 Dependence of the average velocity of the robot on the
parameter τ

The results of the investigation of the dependence of the
average velocity V of the robot on the excitation parameter
τ while the parameter T is fixed are depicted at Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
τ

− 0.10

− 0.05

0.00

0.05

0.10

V

T = 0.66 ⋅ 2π, sim .data

T = 0.66 ⋅ 2π, exp.data

0.0 0.2 0.4 0.6 0.8 1.0
τ

T = 1.10 ⋅ 2π, sim .data

T = 1.10 ⋅ 2π, exp.data

Fig. 2. The dependencies of average velocities on τ

The simulation and the experiment demonstrate that the
average velocity of the steady-state motion of the robot
depends significantly on the duty cycle of the pulse-
width excitation signal, which indicates the possibility of
controlling the motion of the robot by changing only the
parameter τ . For τ = 0, near τ = 1/2, and τ = 1, the

average velocity of the robot is equal to zero. Based on
this figure, one can assume that these curves possess a
property of central symmetry about the point (1/2, 0) of
the coordinate plane τV . For the mathematical model used
for simulation this property was proved in Bolotnik et al.
(2016). This implies that changing the duty cycle of the
excitation signal from τ to 1 − τ at the same period leads
to the change in the direction of motion of the capsule
robot, with the magnitude of its velocity being preserved.

3.2 Dependence of the average velocity on the period T

Figure 2 shows an essential qualitative difference between
the curves for T = 0.66 · 2π and T = 1.10 · 2π, which
is reflected in the change in the sign of the average
velocities for the same values of τ . For example, the sign
of the average velocity in τ interval from 0 to 0.5 is
non-negative for T = 1.10 · 2π > 1 and non-positive for
T = 0.66 · 2π < 2π. This effect could be explained by the
resonance phenomenon. The resonance-induced change in
the direction of motion of a mobile vibration-driven system
was observed previously in Zimmermann et al. (2009).

The resonant change in the sign of the average velocity of
the robot can be seen from the curve plotting the average
velocity V versus the excitation period T (Fig. 3).

0.40 ⋅ 2π 0.60 ⋅ 2π 0.80 ⋅ 2π 1.00 ⋅ 2π 1.20 ⋅ 2π 1.40 ⋅ 2π
T

− 0.050

− 0.025

0.000

0.025

0.050

0.075

0.100

V

τ =  0.3, sim .data

τ =  0.3, exp.data

Fig. 3. The dependencies of average velocities on T

Both curves, the experiment and the simulation, record the
change in the velocity, the first curve near T = 0.82·2π, the
second near T = 2π. Thus, the resonance effect is observed
in the experiment and in the simulation.

4. CONCLUSION

This paper provides model-based and experimental inves-
tigations of a capsule-type robot motion with a periodic
excitation force. The excitation force was controlled by
two excitation parameters. It was demonstrated that the
magnitude and the sign of the average velocity can be
controlled by tuning any of the excitation parameters.
The resonance-induced change in the direction of motion
is shown.
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1. INTRODUCTION

It is widely known that trabecular bones of vertebrates
are constantly being remodeled in response to the corre-
sponding local stresses and strains Boyle (2011). This is
called Wolff’s law. On the other hand, it has yet to be
understood how the outer shape of a vertebrae bone is
formed. In this study, based on the observation of zebrafish
vertebrae bones, we hypothesize that a vertebrae bone is
composed of the two regions: one is formed a priori, while
the other is formed a posteriori against external loading
like trabecular bones. Assuming that Wolff’s law can be
expansively applied to the formation of the outer shape
of a vertebrae bone, we introduce a mathematical model
using topology optimization.

2. ZEBRAFISH AS A MODEL ORGANISM

In this research, we focus on zebrafish as a model organism.
Zebrafish backbone is consist of 32 vertebrae (Fig. 1).
The vertebrae bones significantly change their shapes as
zebrafish is growing up from juvenile to adult (Fig. 2).

Fig. 1. Zebrafish skeleton (left) and V15 single verte-
bra(v15) scanned with micro-CT (right)

3. MATHEMATICAL MODELING

Based on the observation of zebrafish vertebrae bones,
we hypothesize that a vertebrae bone is composed of
two regions: one is formed a priori, while the other is
formed a posteriori against external loading. To simulate
the growth of such a vertebrae bone we first divide the
computational domain into some subdomains as shown
in Fig. 3. Regardless of external loading the white parts
always have bones, while the green parts have no bones
? The authors acknowledge that this research is supported by
CREST and Toyota Central R&D.

Fig. 2. Vertebra development (left) and visualization of
osteoblast (right)

because the regions are occupied by nerves and blood
vessels. These parts form a congenital basic structure.
Assuming that loading acts on the two ends of the two
cones, we apply distributed load on the red and orange
parts with 1 and 0.5, respectively. In response to these
mechanical stimuli, the bone shape in the purple parts is
determined based on the following mathematical model.

Fig. 3. Computational domain for simulating the growth
of vertebrae bone.

Fig. 4. Parameterization for the growth of computational
domain

We first define bone density ρ by the following regularized
Heaviside function of a scalar function φ:
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ρ(φ) =

{
d (φ < −h)
(1− d)H(φ) + d (−h ≤ φ ≤ h)
1 (h < φ)

(1)

where h is the half bandwidth between the bone domain
(h < φ) and the void domain (φ < −h). d is a very small
positive lower bound set for avoiding singularity of the
stiffness matrix. H(φ) is defined as

H(φ) =
1

2
+

15

16

(φ
h

)
− 5

8

(φ
h

)3

+
3

16

(φ
h

)5

(2)

With this representation, we assume that the bone struc-
ture in the purple part is obtained as a solution to the
following optimization problem:

minimize
φ

f :=

∫
ΓN

t · udΓ

subject to g :=

∫
D

ρ(φ) dD− V ≤ 0,
(3)

where V is the upper bound of total volume, t is the
external surface traction, u is the displacement vector.
Since the optimization problem (3) takes the nested form,
the displacement vector u is given by solving the following
force equilibrium problem.

Assuming the deformation is infinitesimal, the stress ten-
sor σ and the strain ε can be expressed with linear isotropic
elasticity tensor E as

σ = E : ε(u), ε(u) =
1

2

(
∇u+∇u>) . (4)

Bone density ρ is embedded in the elasticity tensor as

E = ρPE0, (5)

where E0 is the elasticity tensor when ρ = 1. P (= 3)
is introduced for penalizing the intermediate values [0,1].
Finally, the force equilibrium problem is formulated as

−∇ · σ = 0 in D
u = 0 on ΓD

σ · n = t on ΓN

}
. (6)

In order to set up the time evolution equation for topology
optimization (3), we introduce the Lagrangian L := f+λg
and pursue the following optimality condition Kawamoto
(2013):

dL

dφ
=

df

dφ
+ λ

dg

dφ
= 0, λg = 0, λ ≥ 0, g ≤ 0, (7)

where λ is the Lagrange multiplier. Finally, we update
the scalar function φ by the following reaction diffusion
equation:

∂φ

∂t
= κ∇2φ− α

dL

dφ
(8)

where, κ is the diffusion factor and α reaction factor.

4. NUMERICAL EXAMPLES

We implement the above mentioned method using COM-
SOL Multiphysics COMSOL (2015). The reaction diffu-
sion equation (8) can be solved by the PDE mode (weak
form) in the mathematics module in COMSOL Multi-
physics. Also, the force equilibrium problem (6) can be
solved by the solid mechanics module. The parametrized
domain can be controlled by the parameter sweep function.
When updating the parameter, the final configuration at
the previous stage is used as the initial configuration for

the next stage. At each stage, the upper bound of the
volume fraction is set to 20%. Fig. 5 shows the represen-
tative five stages out of 10 stages. As the vertebrae bone
growing, additional strengthening structures are formed
on the both sides. Fig. 6 compares the measured shape
of a zebrafish vertebrae bone and the shape produced by
the proposed mathematical model. The calculated shape
seemed to capture the basic structure but the shape has
more roundish struts.

Fig. 5. Simulation of the growth of a vertebrae bone using
topology optimization with a parametrized computa-
tional domain

Fig. 6. Simulation (left) and measurement (right)

5. CONCLUSION

We have proposed a mathematical model for simulating
the zebrafish vertebrae bone growth using topology opti-
mization. Numerical results show the proposed model can
capture the basic feature of vertebrae bone, while there
still remain some discrepancies between the calculated
shape and the measured shape.
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1. INTRODUCTION

Consider the following parametric bilinear system{
ẋ(t) = A(p)x(t) + N(p)x(t)u(t) + b(p)u(t),

y(t) = c>(p)x(t),
(1)

where x(t) ∈ Rn, y(t) ∈ R, and u(t) ∈ R denote the states,
output, and input, respectively. We assume that the
parameter p is a scalar, i.e., p ∈ R. We want to find a lower
dimensional parametric bilinear system whose output is a
good approximation to the output of the full order system
for a wide variety of inputs u(t) and parameter values p.
We do so by means of a Petrov-Galerkin projection, i.e.,
given the reduction bases V ∈ Rn×r and W ∈ Rn×r with
W>V = Ir where r � n. The reduced model has the
same structure as in (1) with reduced matrices given by:

Ã(p) = W>A(p)V ∈ Rr×r, b̃(p) = W>b(p) ∈ Rr×1

Ñ(p) = W>N(p)V ∈ Rr×r, c̃(p) = V>c(p) ∈ Rr×1.
(2)

For the recomputations of the reduced model to be
efficient, we assume an affine structure on the matrices
in (1) with respect to the parameter. For example, A(p)
is assumed to have the form

A(p) = A0 +
∑̀
i=1

fi(p)Ai, (3)

where Ai ∈ Rn×n are constant matrices and fi(p) are
scalar nonlinearities, for i = 1, . . . , `. We will focus on
building V and W so that interpolation of the two first
transfer functions of (1) is guaranteed. Thus the goal is
to extend the interpolatory parametric model reduction
results of Baur et al. [2011] to the subsystem bilinear inter-
polation framework of Breiten&Damm [2010]. For more
details on parametric and nonparametric model redution
see Benner et al. [2015], Antoulas [2005], Antoulas et al.
[2001], Baur et al. [2014], Benner et al. [2017], Benner
et al. [2017], Hesthaven et al. [2016], Quarteroni et al.
[2016], Benner and Breiten [2012], Flagg and Gugercin
[2015], and references therein.

The two leading subsystem transfer functions of the
bilinear system (1) are given by

? Supported in part by the National Science Foundation under
contract DMS1522616 and the National Institute for Occupational
Safety and Health under contract 200-2014-59669. The work of
Gugercin was also supported in part by the Alexander von Hum-
boldt Foundation.

H1(s; p) = c>(p)K(s; p)b(p), and

H2(s1, s2; p) = c>(p)K(s2; p)N(p)K(s1; p)b(p)
(4)

where
K(s; p) = (sIn −A(p))−1. (5)

The subsystem transfer functions of the reduced bilinear

system are defined similarly and denoted by H̃1 and H̃2.

2. MAIN RESULTS

We now list the main results that show how to construct
V and W for desired interpolation conditions:

Theorem 1. Let {σ1, σ2} ⊂ C and p̂ ∈ R such that
K(σi; p̂) exists for all i ∈ {1, 2}. Define

v1 = K(σ1; p̂)b(p̂), v2 = K(σ2; p̂)N(p̂)v1,

w1 = K(σ2; p̂)>c(p̂), w2 = K(σ1; p̂)>N(p̂)>w1.
(6)

If
{v1,v2} ⊆ RanV, (7)

then
H1(σ1; p̂) = H̃1(σ1; p̂),

H2(σ1, σ2; p̂) = H̃2(σ1, σ2; p̂).
(8)

If
{w1,w2} ⊆ RanW (9)

then
H1(σ2; p̂) = H̃1(σ2; p̂),

H2(σ1, σ2; p̂) = H̃2(σ1, σ2; p̂).
(10)

Theorem 2. Assume the conditions in Theorem 1. If both
(7) and (9) hold, then not only do we have interpolation
of the transfer functions

H1(σ1; p̂) = H̃1(σ1; p̂),

H2(σ1, σ2; p̂) = H̃2(σ1, σ2; p̂),
(11)

but also of their sensitivities, i.e.,

∂

∂s
H1(σ1; p̂) =

∂

∂s
H̃1(σ1; p̂),

∂

∂si
H2(σ1, σ2; p̂) =

∂

∂si
H̃2(σ1, σ2; p̂),

∂

∂p
H1(σ1; p̂) =

∂

∂p
H̃1(σ1; p̂),

∂

∂p
H2(σ1, σ2; p̂) =

∂

∂p
H̃2(σ1, σ2; p̂).

(12)

Remark. Interpolation of higher order derivatives can
be attained by including derivative information in the
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reduction bases. We skip these details together with the
proofs of above theorem for conciseness. The complete
case of multi-input/multi-output systems together with
a parameter vector p (as opposed to scalar p considered
here) can be found in Carracedo et al. [2017].

3. EXAMPLE

Consider the following model of the transport and diffu-
sion of the temperature of a fluid with thermal conduc-
tivity κ on the domain Ω = [−1, 1]× [−1, 1]:

Ṫ = κ∆T − v · ∇T + u(t)f

T = 0 at t = 0

T = 1 on ∂Ω

(13)

where

v(x, y) = sin t

[
−y
x

]
+

cos t

2
(cos(π(x−y))+1)

[
1
1

]
(14)

and
f(x, y) = exp(−(x2 + y2)) (15)

is a source with strength controlled by the input u(t). We
can rewrite this model as a parametric bilinear system
with input u(t) and output (of our choice) the average
temperature over [0.5, 1] × [0.5, 1]. Then we can define
a reduced-order model as in (2) with basis satisfying
the conditions in Theorem 2. We do so for two different
parameter sets: in the first set we only sample at 0.05;
and in the second set we sample at 0.05, 0.06, 0.07, and
0.08. We show the performance of the reduced model for
a non-sampled parameter value in Figures 1 and 2. Note
that the full-order model has dimension 361 while the
reduced-order model in Figures 1 and 2 has dimension
6 and 12, respectively. The figures show that a good
approximation may be attained with this method by
sampling the parameter space appropriately.
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Fig. 1. Solution of the full order model and the reduced
order model for parameter value κ = 0.055 and input
u(t) = 0.5. Parameter sample: κ̂ = 0.05.
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1. INTRODUCTION

As energy efficiency becomes increasingly important in
everyday life, different energy harvesting systems are being
developed to recycle the energy wasted in the surround-
ing. By doing so, these devices act as independent power
supplies for wireless micro-devices, as an alternative to
batteries. In (Wang et al., 2012), the authors have intro-
duced an energy harvester, which transforms vibrations
into electrical energy, using the piezoelectric effect.

Kudryavtsev et al. (2015) showed that direct application
of one-sided Krylov-subspace-based model order reduction
(MOR) (Bai and Su, 2005; Salimbahrami and Lohmann,
2006; Gugercin et al., 2013) to the harvester model may
lead to unstable reduced models. Therefore, the authors
suggested a new approach called ‘MOR after Schur’ as
they were able to obtain stable reduced models, when a
Schur complement transformation was performed before
MOR. However, they also stated that a Schur complement
transformation increases the number of non-zero entries
in the stiffness matrix and therefore the computational
effort. To tackle this issue Benner et al. (2016) suggest
to undo the Schur complement during the computation of
the projection matrices to retake advantage of the sparse
structure.

In this work, we consider an alternative approach for effi-
cient one-sided reduction of the second-order piezoelectric
energy harvester model, based on the work on first order
systems in (Castagnotto et al., 2015), and establish an
implicit Schur complement transformation.

2. MOR AFTER SCHUR

The system-level representation of the energy harvester
model is shown in Fig. 1. It contains one mechanical input
named displ, three mechanical outputs named centre,
south, north and two electrical ports named el1, el2.

Fig. 1. System-level representation of piezoelectric energy
harvester similar to (Kudryavtsev et al., 2015).

After the spatial discretization of governing partial differ-
ential equations, the piezoelectric model can be described
as follows (Kudryavtsev et al., 2015):

[
M11 0

0 0

]
︸ ︷︷ ︸

M

[
ẍ1

ẍ2

]
+

[
E11 0

0 0

]
︸ ︷︷ ︸

E

[
ẋ1

ẋ2

]
+

[
K11 K12

K21 K22

]
︸ ︷︷ ︸

K

[
x1

x2

]
=

[
B1

B2

]
︸︷︷︸

B

u

y =
[
C1 C2

]︸ ︷︷ ︸
C

[
x1

x2

] (1)

M,E ∈ R(n+k)×(n+k) are the structural mass and damping
matrix. K11 ∈ Rn×n is the structural stiffness matrix,
K12 ∈ Rn×k, K21 ∈ Rk×n are the piezoelectric coupling
matrices and K22 ∈ Rk×k is the dielectric conductivity
matrix. x1 ∈ Cn and x2 ∈ Ck are parts of the state vector
representing nodal displacement and electrical potentials.
u ∈ Rl is the vector of input load, B1 ∈ Rn×l and
B2 ∈ Rk×l are parts of input matrix B. y ∈ Cm is the
user defined output vector, C1 ∈ Rm×n and C2 ∈ Rm×k

are parts of gathering matrix C.

When a Schur complement transformation is applied be-
fore the MOR process, the electrical domain related state
vector x2 can be eliminated by x2 = K−1

22 (B2u −K21x1),
where given K22 is invertible, and the system is then
transformed into:
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M11ẍ1 + E11ẋ1 + (K11 − K12K

−1
22

K21)︸ ︷︷ ︸
=:Ks

x1 = (B1 − K12K
−1
22

B2)︸ ︷︷ ︸
=:Bs

u

y = (C1 − C2K
−1
22

K21)︸ ︷︷ ︸
=:Cs

x1 + (C2K
−1
22

B2)︸ ︷︷ ︸
=:Ds

u

(2)

For one-side reduction (W = V ), the projection matrix V
can be obtained from moment matching at the expansion
point ω = 0 (Salimbahrami and Lohmann, 2006). The
reduced model resulting from the projection can then be
written as:{

V TM11V z̈ + V TE11V ż + V TKsV z = V TBsu

y = CsV z + Dsu
(3)

3. MOR AFTER IMPLICIT SCHUR

In (Castagnotto et al., 2015), the authors show that an
equivalent system for the first-order semi-explicit system
can be established by projecting the input matrix onto the
right deflating subspace corresponding to the finite eigen-
values. Using this new formulation, the Schur complement
is implicitly performed during projection, as stated in the
following result.

Theorem 1. The reduced model (3) can be obtained by
reducing the equivalent system (4):

[
M11 0

0 0

]
︸ ︷︷ ︸

M

[
ẍ1

ẍ2

]
+

[
E11 0

0 0

]
︸ ︷︷ ︸

E

[
ẋ1

ẋ2

]
+

[
K11 K12

K21 K22

]
︸ ︷︷ ︸

K

[
x1

x2

]
=

[
Bs

0

]
︸︷︷︸

B̃

u

y =
[
C1 C2

]︸ ︷︷ ︸
C

[
x1

x2

]
+ Dsu

(4)

where the Schur complement transformation is only per-

formed on the input matrix B̃ and the feed-through matrix
Ds is added.

The equality of the reduced models to (3) can then easily
be shown by straightforward projection of (4) with its one-
side Krylov subspace projection matrix. Note that (4) and
(1) share the same transfer function, hence preserving the
moment matching property.

4. NUMERICAL RESULTS AND CONCLUSION

Fig. 2 illustrates the full model’s frequency response of
the electrical outputs to the mechanical displacement ex-
citation, which is visibly well matched by the frequency
responses of the reduced models (reduce order r = 30)
from both MOR after normal and implicit Schur. Both
reduced models are obtained using first order one-sided
Arnoldi at the expansion point ω = 0 and with pro-
portional damping (Rudnyi et al., 2004). Furthermore,
Table 1 shows that the computational time of the MOR
process can be significantly reduced (six times quicker)
using implicit Schur, since the structure of the stiffness
Matrix is preserved.

REFERENCES

Bai, Z. and Su, Y. (2005). Dimension reduction of large-
scale second-order dynamical systems via a second-
order Arnoldi method. SIAM Journal on Scientific
Computing, 26(5), 1692–1709.

Fig. 2. Frequency response of the electrical outputs
el1 out and el2 out with displacement excitation
displ of full and reduced models.

Table 1. Computational time of MOR for
normal and implicit Schur complement trans-

formed system.

MOR after
Schur

MOR after
Implicit Schur

Computational
Time (s)

213.241 33.827

Benner, P., Saak, J., and Uddin, M.M. (2016). Reduced-
order modeling of index-1 vibrational systems using
interpolatory projections. In Computer and Information
Technology (ICCIT), 2016 19th International Confer-
ence on, 134–138. IEEE.

Castagnotto, A., Panzer, H.K., Reinsch, K.D., and
Lohmann, B. (2015). Stability-preserving, adaptive
model order reduction of daes by Krylov-subspace meth-
ods. arXiv preprint arXiv:1508.07227.

Gugercin, S., Stykel, T., and Wyatt, S. (2013). Model
reduction of descriptor systems by interpolatory projec-
tion methods. SIAM Journal on Scientific Computing,
35(5), B1010–B1033.

Kudryavtsev, M., Rudnyi, E.B., Korvink, J.G., Hohlfeld,
D., and Bechtold, T. (2015). Computationally efficient
and stable order reduction methods for a large-scale
model of mems piezoelectric energy harvester. Micro-
electronics Reliability, 55(5), 747–757.

Rudnyi, E.B., Lienemann, J., Greiner, A., and Korvink,
J.G. (2004). mor4ansys: Generating compact models
directly from ansys models. In Technical Proceedings of
the 2004 Nanotechnology Conference and Trade Show,
Nanotech, volume 2, 279–282.

Salimbahrami, B. and Lohmann, B. (2006). Order reduc-
tion of large scale second-order systems using Krylov
subspace methods. Linear Algebra and its Applications,
415(2-3), 385–405.

Wang, Z., Matova, S., Elfrink, R., Jambunathan, M.,
De Nooijer, C., van Schaijk, R., and Vullers, R. (2012).
A piezoelectric vibration harvester based on clamped-
guided beams. In Micro Electro Mechanical Systems
(MEMS), 2012 IEEE 25th International Conference on,
1201–1204. IEEE.

78

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



Neurotransmitter Release from a Retinal Ribbon Synapse, a Modelling Study 

Hassan Bassereh, Frank Rattay 

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 

8-10, 1040 Vienna, Austria 

 (e-mail: Hassanbassereh@gmail.com) 

 (e-mail: frank.rattay@tuwien.ac.at) 


Keywords: differential equation, retinal bipolar cell, Monte Carlo calculation, random numbers, average 

values, spike, ribbon synapse 



1. INTRODUCTION

The chemical synapse is a structure that permits information 

transfer from neuron to neuron via neurotransmitter release. 

Synapses of specialized cells in the retina and inner ear, e.g. 

retinal photoreceptor and bipolar cells or cochlear hair cells, 

have an extra electron-dense structure in comparison to 

ordinary synapses. This structure, called “ribbon”, plays a 

vital role on modulating vesicle release in response to time 

dependent input signals. This input, in the following 

investigation the terminal membrane voltage Vm of a retinal 

bipolar cell, is related to the variation of light intensity at a 

specific small region in the retina. Neurotransmitter release in 

axon terminals starts when the terminal membrane is 

depolarized which leads to open the voltage-gated calcium 

channels. Opening of calcium channels increases intracellular 

calcium concentration which triggers transient vesicle 

release. Transient vesicle release refers to contrast adaption 

(Oesch and Diamond, 2011). In case of long pulse 

stimulation, transient release is replaced by a tonic or 

sustained release, which occurs at slower rate and refers to 

luminance adaption (Oesch and Diamond, 2011). On the 

other hand, role of different periodic pulses on transient 

neurotransmitter release is investigated. The pulses make the 

terminal membrane depolarized in different levels which 

leads to different amount of neurotransmitter release. 

2. RIBBON SYNAPSE

We simulated a bipolar cell terminal that contains one ribbon 

and we computed the number of vesicles released from this 

ribbon for time dependent input. Vesicles combine to the 

ribbon as soon as any vesicle site is empty on the ribbon. 

Voltage-dependent calcium channels close to the ribbon 

support the release, Fig. 1. The open probability increases for 

these channels according to the increase of membrane voltage 

allowing calcium ions to come into the terminal. Intracellular 

calcium concentration [ ] is the key component in the 

Fig, 1. Scheme of a ribbon synapse. The black oval-shaped 

part represents the ribbon and white spheres connected to the 

ribbon are ‘ribbon vesicles’. Cytoplasmic vesicles are white 

spheres which are not connected to the ribbon. Red arrows 

show direction of incoming calcium ions. Picture taken from 

(Baden, et. al. 2013). 

release process as calcium ions make the vesicles ready to be 

released by binding to them. When the transmembrane 

voltage increases, the internal calcium concentration 

increases (with some delay caused by the ion channel gating 

kinetics) which consequently leads to increment in the 

number of released vesicles. The vesicle release continues 

until the transmembrane voltage reaches about -25mV 

(Oesch, and Diamond, 2011). On the other hand, the vesicle 

release has a stochastic component simulated as Monte-Carlo 

process. 

3. NEUROTRANSMITTER RELEASE

The calcium concentration is governed by 

    (1) 

Where  is the calcium current which represents L-type 

calcium channels, A and V are surface and volume of the 

terminal, respectively, F=96485.33  is the Faraday 

constant, is the initial calcium concentration and  
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is the time constant of a passive extrusion process. The 

calcium current is explained by the Hodgkin-Huxley 

formalism (Hodgkin and Huxley, 1952). used in (Werginz, 

and Rattay, 2016) as follows:  where 

is the maximum conductivity, m is the gating variable 

which represents open probability of the channel, V is the 

membrane voltage and  is the reversal potential and 

depends on the ratio of intracellular and extracellular calcium 

concentrations where the intracellular variations dominate. 

A Monte-Carlo random process exerts the following 

condition on releasing: an equally distributed random integer 

number between 1 to 6 (number of initial vesicles) is selected 

and if there is any vesicle in that site, the neurotransmitter 

releasing occurs.  

4. DISCUSSION

We fitted model parameter according to a synaptically two-

paired pulse experiment in ref. (Oesch and Diamond, 2011, 

Graydon, et.al. 2014). The recorded data of a double pulse 

experiment demonstrates a nonlinear characteristic in vesicle 

release, Fig. 2, left. Our simulated results show averaged 

responses of 100 synapses, Fig. 2, right, which is fitted to the 

experimental data.  In the next step, we simulated the vesicle 

release rate for periodic stimuli with frequencies of 2 and 8 

Hz, Fig 3. Note, some spontaneous vesicle release occurs, 

that is without any stimulation. Frequencies up to 20Hz had 

the same characteristic features as the 8Hz case (simulated 

but not shown). The model again calculated for an ensemble 

with 100 memberships and the pulses starts from 100ms and 

continues to 1000ms.  

Fig. 3. Simulated vesicle release rate for two periodic input 

signals with frequencies of 2Hz and 8Hz. The stimulus starts 

at 100ms and continues to 1000ms. Some spontaneous 

vesicle release occurs, that is without any stimulation. 

Frequencies up to 20Hz had the same characteristic features 

as the 8Hz case (simulated but not shown). 

Fig. 2 (Left) Cumulative vesicle release (average of several 

experiments) vs. time in a single ribbon synapse (bottom) as 

response to a step function (top) Transmembrane voltage Vm 

was hold for one second at a constant value (e.g.  -55mV 

(darkest line) or -25mV (bright line). A following higher 

voltage (-20mV) causes a sudden increase of release as long 

as the maximum release rate is not reached. (Graydon, et.al. 

2014). (Right) The results from the model.  

5. CONCLUSIONS

We used a calcium concentration dependent approach for 

neurotransmitter release for retinal bipolar cells. Direct use of 

membrane voltage as input to the ribbon model can be used 

instead of calcium concentration approach for slow events. 

However, there are different input output characteristics 

when graded potentials are interrupted by spikes in bipolar 

cells. When a spike reaches the terminal of a cell, calcium 

channels open and neurotransmitter will be released as 

consequence of an increase of intracellular calcium 

concentration. The presented model predicts the changing 

release rate as function of transmembrane voltage in the 

synaptic terminal both for spike trains and for graded 

potentials which can be assumed as arbitrary functions of 

time. 
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1. INTRODUCTION

In the context of incomplete information and environ-
mental uncertainty, normative agency theory focuses on
finding the most efficient contract between the principal
and the agent, that aligns the two parties’ interests but
also maximizes the principal’s utility. Typical classes of
problems investigated within the framework of agency
theory are concerned with hidden-characteristics, hidden-
information and hidden-action (e.g., Eisenhardt, 1989).

Normative agency models have a set of assumptions in-
corporated. These assumptions are mainly concerned with
(the distribution of) information and the involved individ-
uals’ behaviour (e.g., Müller, 1995) and might be regarded
as a virtue as they allow for deriving optimal contracts in
closed-form modeling. At the same time, these assump-
tions might also be a fundamental weakness as they might
limit the theory’s predictive validity.

The positive agency literature calls for relaxing these as-
sumptions to map real-world situations. There are some
conceptual papers that make aware of the limitations of
normative agency literature (e.g., Shapiro, 2005). In ad-
dition, there is some empirical research that shows that
mechanisms derived from normative agency models fail
to work in real-world situations (e.g., Cuevas-Rodriguez
et al., 2012). This is where we particularly place our re-
search: We aim at contributing to closing the gap between
positive and normative agency literature by providing a
systematic analysis of selected assumptions in the stan-
dard hidden-action model.

In this paper, we transfer the standard hidden-action
model into an agent-based variant of the hidden-action
problem. In order to do so, we employ the so-called agenti-
zation approach which allows us to relax selected assump-
tion incorporated in the standard hidden-action model. In
the current paper, the process of agentization particularly
concentrates on assumptions regarding the information
available for both the principal and the agent. While the
standard model allows to find the optimal contract in
one timestep, the agent-based model variant requires the
involved parties to search for the optimal contract over

time. In addition to relaxed assumptions, the proposed
agent-based model variant endows the principal and the
agent with learning capabilities and a memory in which
the learnings can be stored. The principal is additionally
endowed with an exploration propensity which drives the
selection of the strategy employed to search for ‘better’
contracts.

2. THE MODEL IN A NUTSHELL

We refer to the following model as standard hidden-action
model: The principal offers the agent a contract (inter alia
consisting of a task to be executed and a compensation
scheme). In case the agent accepts the contract, she
autonomously selects an effort level to execute the task.
Together with an exogenous factor the selected effort level
defines the outcome, which is observable by both the
principal and the agent. The principal can neither observe
the selected effort level, nor does he have information
on the exogenous factor. Thus, the agent’s compensation
can only be based on the outcome. The standard hidden-
action model gives information on how the contract should
be designed so that the principal’s utility maximizes (cf.
Lambert, 2001).

The principal’s utility function can be formalized by

UP

production function︷ ︸︸ ︷
X (a, ρ, θ)︸ ︷︷ ︸
x=a·ρ+θ

,

compensation function︷ ︸︸ ︷
S (cf , x, p)︸ ︷︷ ︸
s=cf+x·p

 , (1)

while the agent’s utility function can be formalized by

UA (s, a) =

utility from
compensation︷ ︸︸ ︷
V (s) −

disutility from
exerting effort︷ ︸︸ ︷

G (a) , (2)

where a ∈ A represents the set of possible actions the
agent can select from to carry out the delegated task,
ρ stands for the agent’s productivity, θ ∈ Θ indicates
the exogenous factor, cf stands for the agent’s fixed
compensation component, and p indicates a premium level.
For further elaborations, the agent’s reservation utility is
indicated by U .
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The principal is modeled to seek to maximize his expected
utility (see Eq. 3) subject to the participation (see Eq. 4)
and incentive compatibility constraint (see Eq. 5): 1

max E (UP (x, s)) (3)

s.t. E (UA (s, a)) ≥ U (4)∫
V (s) fa (x|a) dx−G (a)

′
= 0 (5)

The agent is also modeled to seek to maximize the ex-
pected utility,

max E (UA (s, a)) . (6)

Agency theory allows the principal to solve the optimiza-
tion problem (i.e., to find the ‘optimal’ premium level, p,
cf. Eq. 3–5) within one timestep, which (sometimes implic-
itly) includes very specific assumptions about the avail-
ability of information as well as about the involved parties
capabilities. It is, e.g., assumed that the principal has full
information about the agent’s characteristics (UA, U, ρ),
is able to observe the outcome (x), knows the entire set
of actions (A) the agent can select from to carry out the
delegated task, and has information about the distribution
of exogenous factors (Θ). The agent is assumed to have
information on the distribution on exogenous factors (Θ),
and the outcome (x). In addition, the agent is modeled
to have private information on the selected action (a) and
the realized exogenous factor (θ). 2

Using the so-called agentization approach, the standard
model is transferred into an agent-based model variant. 3

The agent-based model variant represents a multi-period
version of the standard hidden-action model. A special fea-
ture of the agent-based model variant is that the principal
and the agent are no longer able to find the optimal solu-
tion in one time-step but rather have to search for the opti-
mal solution over time. During the process of agentization,
particular focus is put on assumptions regarding the prin-
cipal’s and the agent’s information about the distribution
of exogenous factors and the principal’s information about
the set of actions. In particular, regarding the information
about the action space and the distribution of exogenous
factors, the following (presumably more realistic) assump-
tions are included in the agent-based model variant:

Assumptions regarding the principal’s information

• Principal has limited information about the set of
actions
• Principal is endowed with a mental horizon which

defines the fraction of A that can be overseen
• Principal has no information about the distribution

of exogenous factors
• Principal is endowed with the capability to learn

about the distribution of exogenous factors over time
and with a memory in which learnings are stored

1 For more details on the standard model and the included con-
straints the reader might consult Lambert (2001).
2 A detailed discussion of these assumptions is provided in Müller
(1995).
3 For details on the agentization approach the reader is referred to
Leitner and Behrens (2014) and Guerrero and Axtell (2011).

• Principal is endowed with an exploration propensity
which drives the strategy employed to search for ‘the
optimal solution’ over time

Assumptions regarding the agent’s information:

• Agent has no information about the distribution of
exogenous factors

• Agent is endowed with the capability to learn about
the distribution of exogenous factors over time and
with a memory in which learnings are stored

All other assumptions remain unaffected by the agenti-
zation approach and are carried over from the standard
model to the agent-based model variant.

3. SELECTED RESULTS

We find that the impact of the exogenous factor on the
task’s outcome significantly affects the efficiency of the
contract offered to the agent, i.e., performance decreases as
the impact of the exogenous factor on the task’s outcome
increases. Our results also indicate that the principal’s
exploration propensity does not significantly affect the
efficiency of the derived contract if the impact of the
exogenous factor is kept stable. We do, however, observe
significant differences (caused by the principal’s explo-
ration propensity) across scenarios in which the impact
of the exogenous factor is varied. We find that, in our
model, a lower level of exploration propensity is particu-
larly beneficial when the environment has a strong impact
on the task’s outcome. Moreover, we aim at identifying
additional factors that drive our results (like, e.g., the
principal’s mental horizon). Based on our results we aim
at characterizing critical factors and their interrelations
in the context of hidden-action problem and at providing
decision support on how to optimally shape delegation
relationships.
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1. INTRODUCTION

A problem of modeling diffraction of a plane electromag-
netic wave on a layer is considered. The layer is periodic
by two directions and is bounded by two surfaces along the
third one. These surfaces are also periodic and can have
any form along those two directions. The permittivity of
the layer is given by an arbitrary function. This function
can even be discontinuous. Thus, in the framework of this
model, a number of diffraction problems can be solved,
e.g. diffraction on a grating or on a hologram, diffraction
on earth or sea surfaces, problems of propagation of an
electromagnetic wave in a waveguide, etc.

It is needed to calculate the diffracted electromagnetic
field. The reflected and the propagated through the layer
fields should be found. Coefficients of reflection, transmis-
sion and absorption (in the case of an absorbing medium)
should also be computed. Therefore, in the described
formulation, the following direct and inverse (see Kirsch
(2011)) problems of diffraction can be solved:

• the tomography or the holography, where it is nec-
essary to calculate the wave that passed through
the media, or to synthesize a hologram with desired
properties;
• the inverse scattering or the tomography of the inside

of the layer, that requres to find the reflected from
layer wave, for example, detection of underground
objects as in Fiaz et al. (2012), or identifying the layer
surface shape, for example, the active radar probing
of the ocean surface;
• the determination of a shape of a layer based on

information about its self-radiation, for example, the
passive radio probing of the sea surface as in Gavrikov
et al. (2016), where it is necessary to calculate the
absorption coefficient.

The latter is possible thanks to the reciprocity principle,
see Tsang et al. (2000). According to this principle, the
self-radiation of a medium in a given direction is in the
proportion to an energy absorbed by the medium under
irradiation by a plane wave from this direction.

Solution of the outlined above problem of diffraction of
the wave on the layer was described earlier for the two di-
mensional cases of H-polarization and E-polarization (see

? The reported study was funded by RFBR, according to the
research project No. 16-31-60096 mol-a-dk.
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−→
k
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Fig. 1. Scheme of the wave incidence

Knyazkov (2017b,a)). In the current paper, the substan-
tially three dimensional case is considered. The method of
projections proposed in Il’inskiy (1998) is used to calculate
the result of diffraction. This approach allows us to reduce
the original problem to a system of ordinary differential
equations (ODEs) of the first order.

2. PROBLEM STATEMENT

The wave comes at arbitrary inclination to the layer’s

surface. Its wave-vector
−→
k has the angle α with the axis

Ox3 (see Fig. 1). The projection of this vector to the
Ox1x2 plane forms the angle θ with the Ox1 axis. The
layer is bounded by two surfaces defined by the functions
S1(x1, x2) and S2(x1, x2). The permittivity of the layer
is given by the function ε(x1, x2, x3). Functions S1, S2, ε
are periodic along Ox1 and Ox2 axes with corresponding
periods a1 and a2.

The Maxwells equations for the case of time-harmonic
waves can be used. In the three dimensional space they
lead to the following system for the components of the
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complex phasor amplitude electric field intensity vector−→
E = (E1, E2, E3):

E1,22 + E1,33 − E3,13 − E2,12 + εk20E1 = 0,

E2,11 + E2,33 − E1,21 − E3,23 + εk20E2 = 0,

E3,11 + E3,22 − E1,31 − E2,32 + εk20E3 = 0,

(1)

where Ei,jk = ∂
∂xk

∂
∂xj

Ei(x1, x2, x3). The goal is to solve

the problem (1) with the corresponding radiation condi-
tions in the domain Ω = [0, a1]× [0, a2]× [x̂03, x̂

1
3].

3. THE METHOD OF PROJECTIONS

The system (1) can be solved with the use of the method
of projections proposed in Il’inskiy (1998). The vector

function
−→
E (x1, x2, x3) can be represented as

Ei(x1, x2, x3) =
N∑
s=1

Bis(x3)ψs(x1, x2), i = 1, 2, 3. (2)

Here, functions ψs have the following property∫ a2

0

∫ a1

0

ψs1(x1, x2)ψ∗s2(x1, x2)dx1dx2 = δs1,s2 , (3)

where s1, s2 = 1, . . . , N , f∗ is the conjugate of f , δij is
Kronecker delta, δij = 1 for i = j, δij = 0 for i 6= j.

After substituting the solution expansion (2) to the equa-
tions from (1), multiplying them by ψ∗s (x1, x2), s =
1, . . . , N and integrating on [0, a1] × [0, a2] we will have
the following system of 4N first order ODEs:{

p′ = Qb,

b′ = Cp,
(4)

where Q and C are some matrixes with piece-wise con-
tinuous coefficients, p and b are the vectors of unknown
variables. The boundary conditions can be written as{

Cp+ iGb|x3=x̂0
3

= 0,

Cp− iGb|x3=x̂1
3

= v,
(5)

where G is the diagonal matrix and the vector v is defined
by the initial wave:

v = (v1, . . . , vn, . . . , v2N )T

= (−2iγ1
√
a1a2E01e

−iγ1x̂1
3δn,1, 0,

. . . , 0,−2iγ1
√
a1a2E02e

−iγ1x̂1
3δn,N+1, 0, . . . , 0)T ,

(6)

where γ1 = |
−→
k | · cos(α).

After solving the resulting system of ODEs (4) with the
boundary conditions (5), we obtain the functions Bns, n =
1, 2, 3, s = 1, . . . , N . Substitution of these function to (2)
gives us the desired solution. When knowing the solution,
the reflection, transmission and absorption coefficients
could easily be calculated.

4. COMPUTATIONAL PROGRAM

The computer program is written, that implements the
described procedure. It is verified by comparison with
an analytical solution in the simple cases of an oblique
incidence on a homogeneous plane layer. In the other series
of computations, the results are compared with the results
obtained by another program for the case of H-polarized or
E-polarized wave and homogeneous cylindrical layer with

a sinusoidal surface (see Knyazkov (2017b,a)). Numerical
experiments show the high accuracy. The error is less
than 0.1% for computational meshes, that has 200-300
points along each of the coordinate axes. Some calculations
for the needs of sea surface radiometry are performed.
The good sensitivity and good selectivity to sea surface
disturbances is shown for the inverse problem of sea surface
form identification.

5. CONCLUSIONS AND OUTLOOK

In this paper, the diffraction of plane wave on a periodic
layer is considered. The layer has arbitrary permittivity
distribution and is bounded by two surfaces, that have
arbitrary shape. The method of projections is used which
allows to reduce the initial problem to the system of first
order ordinary differential equations.

The developed computer program can be used in the
mentioned applications. To decrease calculation time, the
program can be rewritten for the hybrid cluster architec-
ture. The described above programs are available free of
charge on the internet. The source code can be down-
loaded from https://bitbucket.org/Jclash/dpproj. Small
calculations can be performed with the use of web-interface
http://ipmnet.ru/ knyaz/diffraction.html (see Knyazkov
(2017c)) at Hybrilit HPC cluster installed at the Labo-
ratory of Information Technologies of the Joint Institute
for Nuclear Research, Dubna, Russia.
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1. INTRODUCTION AND PRELIMINARIES

Recently fractional calculus is under strong attention as
useful tool in modelling. In many cases fractional deriva-
tives and difference operators proved their usefulnes and
effectiveness in describing many real-life processes and
phenomenas. For a review of theory and applications of
fractional calculus, we refer the reader to (Hilfer, 2000;
Kaczorek, 2009; Mozyrska & Wyrwas, 2015; Ostalczyk,
2016; Podlubny, 1999). For variable-order applications the
reader can see more in Mozyrska & Ostalczyk (2017). In
the paper we investigate discrete time operators with vari-
able orders. We define variable-, fractional order backward
difference of the Grünwald-Letnikov-type which means
that the order is a single-variable, positive-valued function.
Our goal is to start investigations of fitting data for noised
eigenvalue function for initial value problem for fractional
difference with variable-order.

Definition 1. For k, l ∈ Z and a given order function ν(·)
we define the oblivion function, as a discrete function of
two variables, by its values a[ν(l)](k) given as

a[ν(l)](k) = (−1)k
ν(l) [ν(l)− 1] · · · [ν(l)− k + 1]

k!
, for k > 0

(1)
and a[ν(l)](k) = 0 for k < 0, a[ν(l)](0) = 1.

Formula (1) in Definition 1 is equivalent to the following
recurrence with respect to k ∈ N:

a[ν(l)](0) = 1 ,

a[ν(l)](k) = a[ν(l)](k − 1)

[
1− ν(l) + 1

k

]
for k > 1 .

(2)

Definition 2. Let f be a discrete-variable bounded real
valued function. The Grünwald-Letnikov variable-, fractional-
order backward difference (GL-VFOBD) with an order
function ν : Z → R+ ∪ {0} of function x(·) is defined
as a finite sum

? The work was supported by Polish founds of National Science
Center, granted on the basis of decision DEC-2016/23/B/ST7/03686
and COST Action CA15225.

(
∆[ν(k)]x

)
(k) =

k∑
i=0

a[ν(k)](i)x(k − i) =

[
1 a[ν(k)](1) · · · a[ν(k)](k)

]


x(k)
x(k − 1)
· · ·
x(1)
x(0)

 . (3)

Let

A[ν(k)] :=


1 a[ν(k)](1) · · · a[ν(k)](k)

0 1 · · · a[ν(k−1)](k − 1)
...

...
...

0 0 · · · 1

 . (4)

We consider the simple equation with variable-order for
k0 = 0. (

∆[ν(k)]x
)

(k) = λx(k − 1) , k ≥ 1 (5)

with initial condition x(0) = x0 and constant coefficient
λ ∈ R. Then we can solve equation (5) by recurrence

x(k) = −
k∑
i=1

a[ν(k)](i)x(k − i) + λx(k − 1) , k ≥ 1 . (6)

Instead of working with recurrence we can use matrix

form of defined matrices A
[ν(k)]
k . Moreover, let us use the

following notation

x(k) =


x(k)

x(k − 1)
...

x(1)
x(0)

 . (7)

Then, equation (5) can be written in the matrix form

A[ν(k)]x(k) =

[
λx(k − 1)
x(0)

]
, k ≥ 1

and its solution looks like the series of algebraic solutions:

x(k) =
(
A[ν(k)]

)−1
[
λx(k − 1)
x(0)

]
. (8)
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2. FRACTIONAL VARIABLE-ORDER EQUATIONS
APPROXIMATION

Fitting experimental data is one of the most important
issue for modeling. Efficient methods of finding fractional
order equations which could describe real life phenom-
ena would help us to develop better and more accurate
mathematical models. In the first stage of our research
we are trying to find a way to determine a value of λ
knowing the order function. Additionally, we add noise
signal to the data sets, which are used as an input data for
our calculation to simulate ”real life” measurement data.
This approach emulates finding mathematical model which
describes some real process.

We calculate GL-VFOBD values based on (8) matrix
definition for different order functions and the different
levels of noise. At the beginning we are trying to estimate
λ using Mean Squared Error as a qualitative criterion of
the estimation. Let yk = x(k) + ε, where ε ∼ N(0, σ) is
added noise. We assume, that we know order function, so
we know also matrices given by formula (4). Then, the
simplest criterion to fit λ is to minimize the following
function

Sk(λ) := ETk Ek ,

where

Ek = yk − λ
(
A[ν(k)]

)−1
[
yk−1

y0

]
.

The formula is slightly different as in equations (8), which
gives us simpler formulation of the minimizer.

Then, λ0 minimizing Sk for the set of k+ 1 values is given
by the formula

λ0 =
1

2d

(
yTkA

−1

[
yk−1

y0

]
+
[
yTk−1y0

]
(AT )−1yk

)
, (9)

where

d =
[
yTk−1y0

]
(AT )−1A−1

[
yk−1

y0

]
and A = A[ν(k)].

Then, theoretical values ŷk we have from formula:

ŷk =
(
A[ν(k)]

)−1
[
λ0yk−1

y0

]
. (10)

In figures 1 and 2 we show some examples of order func-
tions, noised data and the theoretical data from approx-
imation given by (10). During our research we found out
that λ estimation quality may be different for given order
function even for the same level (variance and mean value)
of noise. For some of the random noise values λ was not
estimated properly (estimation error was significant). This
was particularly evident when added noise values were
high.

3. CONCLUSION

In future plans we are going to extend our investigations to
matrix-eigenvalue form and also for situations, where we
do not know parameters of order-function. Moreover, we
are expecting some results in fitting real data by fractional
models with variable order.

Fig. 1. Order function ν(·) changed values from 0,5 to 0,8,
original λ = 0.3, approximated λ = 0.3035

Fig. 2. Order function ν(k) = 1− e−0,2k, original λ = 0.3,
approximated λ = 0.2923
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1. INTRODUCTION

Today, motor inverters in the kW domain typically are
implemented using silicon (Si) based insulated gate bipolar
transistors (Si-IGBT) operating in pulse width modulation
(PWM) mode at switching frequencies up to 20 kHz. Dur-
ing the past few years, however, wide-bandgap switching
devices like GaN- and SiC-MOSFETs have been signifi-
cantly improved, especially concerning voltage capability
of GaN devices. Due to the low switching- and also low on-
state losses of GaN MOSFETs in comparison to Si-IGBTs,
motor inverters with rather high switching frequencies
but also high efficiency rates can be achieved (Shirabe
and Swamy, 2012). However, the occurring high switching
speed of the transistors with rise times in the range of 10
ns also create some crucial issues for motor applications
caused by high du/dt rates.

RdLd

L2

L1

C1
C2

GaN Power Stage

CDC

Active-Damped Filter

3-Phase Motor

LMRM

p

n

3x

Fig. 1. Schematic concept of the proposed motor inverter
with GaN power stage (switching frequency 100 kHz),
active damped filter and a 3-phase motor as load.

To avoid and reduce negative effects of high-speed switch-
ing, the GaN inverter has to be extended by a filter system,
which suppresses all switching noise at the inverter’s out-
put such that motor and cabling are fed by ”sinusoidal-
like” voltages (Fig.1). A two-stage LC output filter is
used to achieve sufficient attenuation of the switching
frequency harmonics. To obtain higher inverter efficiencies,
an active damping concept of the LC-filter by feedback
of the capacitor filter currents is applied instead of dis-
sipative damping paths (which would result in additional
losses). A closed-loop control concept using a simple PI-
type controller employing additional feedback of the ca-
pacitor currents is performed. The determination of fitting

controller parameters will be discussed in an upcoming
paper, because here, the focus lies on the active damping
scheme. Therefore, a mathematical model which represents
the the physical properties of the filter and the motor
as a load is implemented. Nevertheless, as illustrated in
the following section inverter voltage limitations and non-
linearities of passive filter elements have negative influence
on the chosen active damping scheme.

2. MATHEMATICAL MODEL

- RM

LM

L1

k

C1
uC1

ui

GaN Power Stage

iC1

iM
ν = 1

uemf

1

sL1
-

ui
-

1

sC1

1

sLM

k

Gs

iMiL1 uC1

(a)

(b)

uemf

iC1

-
-

Fig. 2. (a) Single equivalent circuit of the inverter. (b)
Plant dynamic model.

As described in (Maislinger et al., 2017), a single equiva-
lent circuit can be found, (c.f., Fig. 2a), which shows the
influence of the feedback of the capacitor current on the
transfer function of the inverter. Therefore, the GaN power
stage block has an assumed transfer function of gain ν = 1.
Furthermore, only a single stage filter is considered. The
feedback gain k can be adjusted to obtain a desired filter
behavior. The motor, which operates as inverter load, is
considered by its resistance RM , inductance LM (which is
at least ten times higher than L1) and by the rotational
speed proportional induced voltage uemf , which acts in the
system as a disturbance value. In case of a motor inverter
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Fig. 3. (a) Closed-loop control concept. (b) Nonlinear plant
dynamic model.

with constant values of L1 and C1, the transfer function
in terms of the phase current iM to the converter input
voltage ui can be written as (see Fig. 2b)

G(s) =
1

s (C1L1LMs2 + C1LMks+ L1 + LM )
, (1)

where the motor resistance RM is set to zero (worst case
scenario). A comparison of the transfer function to a
conventional PT2 in the form

GPT2 =
1

s2/ω2
0 + 2ξs/ω0 + 1

, (2)

leads to an expression of the active damping parameter

k =
2ξ

ω0

L1 + LM

C1LM
= 2ξ

√
(L1 + LM )L1

C1LM
, (3)

which guarantees a well damped system behavior.

2.1 System Input Limitation

For the investigated inverter, in case of a large step-
change in the desired motor current i∗ the system input
ui is limited to ±U (whereby U corresponds to the half
of the DC-link voltage) as illustrated in Fig. 3a (switch
S1 is in position S1 = 0). Therefore, the implemented
active damping scheme is ineffective, since no control
margin is available to counteract the excitation of the
filter resonance. This phenomenon can be decreased if an
additional output limiter is adapted next to the controller
(S1 = 1), which guarantees a buffer for the active damping
part. Fig. 4a depicts the influence of the system input
limitation on the filter current through the inductor iL1

as well as the resulting motor current, for both cases. As
can be seen, the additional output limiter decreases the
current in the passive filter elements, but also reduces the
system dynamic.

2.2 Nonlinearities of Passive Filter Elements

To consider nonlinearities of the passive filter elements in
the model, the function Gs of Fig. 2b has to be replaced
by Fig. 3b. The values of the lookup tables come from
data sheets that correspond to a Sendust powder core with
a permeability of 60 for L1(i) and an Arcshield ceramic
capacitor with 330 nF, 500 V for C1(u) (KEMET, 2017).
As mentioned above in (3), the optimal active damping

parameter k is a function of the passive filter elements
L1 and C1. However, by measuring the capacitor filter
current iC1 nonlinearities of L1 and C1 seem to have only
small influences on the active damping mechanism of the
proposed inverter as illustrated in Fig. 4b. But, if the effect
of a time delay caused by measuring the filter current is
also considered (S2 = 1), the impact of nonlinear filter
elements is crucial. In Fig. 4b, a time delay Td of 5us is
assumed, which corresponds to half a period at a switching
frequency of 100 kHz. For higher time delays in the range
of a full switching period the system becomes unstable.
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Gs

Fig. 4. (a) Influence of system input limitation. (b) Impact
of nonlinearities on filter- and motor currents (red) as
well as influence of time delay in capacitor current
measurement (gray). In all cases: S1 = 1.

3. CONCLUSION

The paper gives a brief overview about the impacts of non-
linearities and input limitations on wide-bandgap inverters
with an active damped LC-filter. It is shown that by using
a further limiter after the controller output, the functional-
ity of the active damping scheme remains present, indepen-
dent of the controller output. Furthermore, nonlinearities
and time delays in capacitor current measurement can lead
to an unstable behavior of the dynamic plant. The negative
time delay effect can be neglected, if a linear observer-
based model is used to calculate the capacitor filter current
instead of the measurement. The effect of nonlinear filter
elements on the control concept with the observer-based
model is under investigation.
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1. INTRODUCTION

Microgrids are present in electrical networks and are be-
coming more important in the conventional AC distri-
bution networks. Microgrids are composed by converters
which transfer the power produced in the microgrids to
the loads. It is crucial to control properly the converters
in order to ensure stability of the voltage magnitude and
frequency on the grid.

The general scheme of the voltage source converter (VSC)
is presented in Fig. 1. Using modulated signals to control
the pulses for opening and closing the switching devices,
the converter is able to transfer back and forth the energy
form the DC side to AC grid.

Lf vg
vm

ig

Rf

PWM
Modulation	signal

vdc

Fig. 1. Voltage source converter

The aim of this paper is to compare the properties of
synchronization, here we present the comparison between
two control strategies with very different conceptions.
One is the synchronous reference frame control (SRFC),
which is set by assuming that the converter exhibits a
linear behavior [Yazdani and Iravani (2010) Teodorescu
et al. (2011)]. The second controller is the virtual os-
cillator control (VOC). This is a new control approach
for the AC/DC converters developed by Johnson et al.
(2012). This control strategy uses a nonlinear oscillator

that provides a modulation signal for the converter. This
comparison is meaningful because both approaches have
the same purpose in a microgrid: the control of the power
in the converter.

2. SYNCHRONOUS REFERENCE FRAME CONTROL

Born for the control of electrical machinery (Kundur
(1994)), the rotational framework dq0 helps to transform
the sinusoidal values into constant values. This transfor-
mation simplify the control of the AC current in the invert-
ers. This transformation is commonly used in three phase
circuits. For the single-phase converter an additional step
is needed for the phase angle detection. A fictitious α− β
signal is produced by using the second order generalized
integrator (SOGI). The resultant signals in quadrature
provide a proper way to transform the single phase voltage
and current into the dq0 framework.

2.1 Droop control

Under the assumption that the current control is tuned,
and the PLL has a faster time response than the current
control, then the power angle of the converter δi is small
(De Brabandere et al. (2004)). It is also assumed that the
resistance in the output filter Rs is negligible. Therefore,
the power expression for the converter is,

Si = Pi + jQi (1)

Assuming that δi is small, the active power Pi is approxi-
mated by,

Pi ≈
VgVmδi
XL

(2)

and the approximated reactive power Qi is,

Qi ≈
(
Vg − Vm
XL

)
Vg (3)

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 89-90, DOI: 10.11128/arep.55.a55262 89

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



These relationships allow the proportional control for
the voltage and frequency in the converter terminals by
applying the following proportional control laws.

Vm = V ∗
m +mQiQi (4)

ω = ω∗ +mPiPi (5)

Where mQi and mPi are the proportional droop gains for
voltage and frequency respectively.

2.2 Kuramoto equivalent model

The equivalent Kuramoto model is the representation of
the oscillatory characteristics of coupled oscillators (also
called Kuramoto oscillators). Consider the phase of the ith

converter connected in parallel to the utility grid, which
follows the dynamic.

dθi
dt

= ωi −
n∑
j=1

aij sin(θi − θj) (6)

Each converter connected to the utility grid has a degree
of coupling aij to the utility grid frequency. The coupling
parameter aij for each converter is by definition (Simpson-
Porco et al. (2012)),

ai0
∆
=
VgVm
XL

(7)

Where Vg and Vm are the RMS values of the voltages in
the utility grid and the converter AC side.

3. VIRTUAL OSCILLATOR CONTROL

The virtual oscillator control works using a resonant
circuit with equations similar to the nonlinear van Der
pol oscillator.

The dynamic is that of a parallel RLC circuit and a
nonlinear voltage dependent current source (Johnson et al.
(2016)). Where the resonant circuit and the dependent
current source g(vc) are implemented in a programmable
device (computer, FPGA, etc.), the program provides the
modulation signals to the converter. The current and
voltage equations are,

L
diL
dt

= vc (8)

C
dvc
dt

= σvc − klv3
c −

vc
R
− iL + klu (t) (9)

Where the term (σvc−kv3
c ) describe the nonlinear dynamic

of the voltage dependent current source, vc is the voltage
in the capacitor of the RLC circuit. For simplicity the
following terms are defined

ε =

√
L

C
, α = σ − 1

R
, β =

3kl
α

where σ, k are positive constants. With the natural fre-
quency of oscillation ω =

√
LC. For the synchronization

analysis the equations (8) and (9) need to be transformed
into polar coordinates (Johnson et al. (2014a)). This trans-
formation gives an explicit expression of the phase angle
of the converter θ and amplitude r related to the voltage
amplitudevc. The equations in polar coordinates are,

dri
dt

=
1

C
(αh (r cos(ωt− θ)) + klu (t)) cos(ωt− θ) (10)

dθi
dt

= ω −
(
α

rC
h (r cos(ωt− θ)) +

klu (t)

rC

)
sin(ωt− θ)

(11)

Where h(y) is the function h(y) = y − β
3 y

3.

Notice that equations (10) and (11) depend on the term
ku (t) which is the input current (sinusoidal) for the RLC
circuit. Equation (11) also depend on the term α. As
proposed by Johnson et al. (2014b), to ensure a stable
limit cycle in the system, α has to be positive and small.
This implies that a simplified form for equation (11) can
take the form of the equivalent Kuramoto model.

3.1 Kuramoto equivalent

From equation (11), if α can be considered as a small,
equation (11) becomes,

dθi
dt

= ω −
(
klu (t)

rC

)
sin(ωt− θ) (12)

Such equivalent reduced nonlinear model has the same
structure as the Kuramoto model. Being aij equal to,

klu (t)

rC
= aij (13)

The comparison of the two equivalent Kuramoto models
for different control techniques represents a simplified task
compared to the work presented by Johnson et al. (2017),
in which the use of the measured current and the protector
matrix (Johnson et al. (2014b)), the synchronization error
is computed.

3.2 Discussion

To the authors understanding, the methods used nowadays
for the analysis of synchronization characteristics in the
SRFC does not include the complete PLL dynamics for
the analysis. An explicit form for the phase angle is needed
for the modeling of the PLL dynamics. Such mathematical
expression could be used to understand the problematic of
the synchrony of converters under adverse circumstances
like

• The converters coupled by exchanging power.
• Converters connected to a ”weak” utility grid.
• Converters controlling the DC voltage.

This paper presents the fact that there is no formal way to
compare converters with different control objectives and
structures. It presents the need for a formulation of the
equivalent (Kuramoto) model that represent the dynamic
of the synchronization.
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1. INTRODUCTION AND OUTLINE

In this discussion paper we consider the convection-
diffusion equation with time-varying boundary conditions
as a simple model of a room whose temperature shall be
controlled in an energy efficient way. This model serves
as an example for which we want to investigate whether
results from a recent paper (Grüne and Pirkelmann, 2017)
also hold for a more involved model.
In the first part we introduce the model and formulate a
constrained optimization problem. The following section
outlines how an approximate solution to the problem can
be obtained using Model Predictive Control (MPC). The
method is briefly described and we also mention results
about the relation between the MPC solution and the
solution of the original problem. The final part gives a
brief overview of selected aspects of the implementation.

2. PROBLEM STATEMENT

Consider the heat equation
∂y

∂t
− α∇2y+w∇y = 0 on Q := Ω× [0, T ], (1)

y(0) = y0 on Ω, (2)

where y : Q→ R is the temperature, α > 0 is the diffusion
coefficient, w : [0, T ] × Ω → R is a velocity field and
y0 : Ω→ R is the initial condition.
As a domain Ω we consider the unit interval. The boundary
Γ is partitioned into a controlled boundary Γc and an un-
controlled boundary Γout, see Figure 1. On the controlled
part of the boundary a function u is applied representing
heating and cooling. This is modelled by the condition

β
∂y

∂n
+ γcy = γcu on Σc := Γc × [0, T ]. (3)

On the uncontrolled part we have

β
∂y

∂n
+ γouty = γoutyout on Σout := Γout × [0, T ]. (4)

In the above equations ∂y
∂n is the derivative of y in normal

direction, yout is the outside temperature, and β : Σ→ R,
γc : Σc → R and γout : Σout → R are coefficient functions.

Defining γ :=

{
γout on Γout

γc on Γc
and z :=

{
yout on Γout

u on Γc

? This work was supported by DFG-Grant GR 1569/16-1

the two above boundary conditions can be written in a
more consise way:

−β ∂y
∂n

= γ(y − z) on Σ. (5)

Ωy

Ω

ΓcΓout

Fig. 1. Illustration of domain Ω and subdomain Ωy, as well
as controlled (Γc) and uncontrolled (Γout) parts of the
boundary.

In addition to controlling the temperature at the boundary
we may control the velocity field w. For simplicity we
assume that for any fixed time point w is constant on the
whole domain, i.e. does not depend on space.
The presented model is motivated by a practical appli-
cation: energy efficient building control. We would like to
influence the temperature of a room (Ω) by controlling the
temperature at one wall of the room (Γc) and the airflow
inside the room. The temperature at the other wall cannot
be controlled and may be changing over time (e.g. due to
changing weather). However, we assume that the outside
temperature yout is known in advance via the weather
forecast, at least for a certain time span into the future.
Our goal is to keep the temperature in some part of the
room Ωy within certain upper and lower bounds y and y,
and doing so using as little control effort (or energy) u and
w as possible. In addition, we may also want to penalize
the deviation from some reference temperature yΩ.
This is expressed by the following optimal control problem:

min
y,u

J(y, u) =
εy
2
‖y(T )− yΩ(T )‖2L2(Ω) +

εy
2
‖y − yΩ‖2L2(Q)

+
εu
2
‖u‖2L2(Σ) +

εw
2
‖w‖2L2(0,T )

(6)
subject to equations (2), (5) and the constraints

u ≤ u ≤ u on Σc, (7)

y ≤ y ≤ y on Ωy × [0, T ], (8)

with (possibly time-varying) lower and upper bounds for
state and control.
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3. MODEL PREDICTIVE CONTROL

For large or possibly infinite time horizon T the problem
becomes very difficult to solve numerically. Also, reliable
weather forecast data will only be available for relatively
short periods. To deal with this issue Model Predictive
Control (MPC) is used. For an in-depth introdution to
MPC we refer to Grüne and Pannek (2017).
Briefly, the idea is as follows: Starting at time t = 0
given the state y(0) = y0 we consider the problem on
a shorter horizon [0, TMPC ] with TMPC < T and solve
the reduced open-loop problem instead. As a solution we
obtain the control u on the smaller horizon which is then
applied to the system up to t = h with some sampling rate
h < TMPC . At time t = h the state is measured again and
the procedure is repeated. Continuing this way we obtain
the closed-loop of the controlled system.
The natural question now is whether the MPC closed-
loop approximates the solution of the original problem.
Our recent results for time-varying systems show that
at least the cost of an infinite horizon optimal solution
is approximated by the MPC algorithm, cf. Grüne and
Pirkelmann (2017). In that paper we used a rather simple
example to illustrate the results.
The model presented in the current paper is more involved
and will serve to demonstrate that approximate optimality
can also be observed in the infinite-dimensional setting.

4. IMPLEMENTATION DETAILS

MPC reduces the problem in time but we still need to solve
an open-loop optimal control problem in each step of the
MPC algorithm. We use a First-Discretize-Then-Optimize
approach to solve the problem.
Discretizing the optimal control problem (6), (8) in time
and space we obtain a finite-dimensional optimization
problem with a quadratic cost functional

min
yh,u,w

J(yh, u, w) =

N−1∑
k=0

(εy
2

(yh,k − yΩ,k)TQ(yh,k − yΩ,k) +
εu
2
uTkRuk

+
εw
2
wT

kWwk

)
+
εy
2

(yh,N − yΩ,N )TQ(yh,N − yΩ,N )

subject to the nonlinear constraints

Ayh,k+1 + wkBwyh,k+1 = Byyh,k + buuk + by,outyout,k
for k ∈ {0, . . . , N − 1},

y
h,k,i
≤ yh,k,i ≤ yh,k,i for k ∈ {0, . . . , N}, i ∈ IΩy

,

uk ≤ uk ≤ uk for k ∈ {0, . . . , N − 1},
where the matrices A, Bw, By and the vectors bu and by,out
stem from the finite element discretization and Q, R and
W are weighting matrices and IΩy

is an index set corre-
sponding to finite element nodes inside the subdomain Ωy.
The implementation is carried out using FEniCS, cf. Al-

næs et al. (2015), Logg et al. (2012), for the finite element
discretization and MATLAB’s fmincon solver for the op-
timization. The source code for our implementation of the
MPC algorithm can be found on GitHub, see references.
Our numerical simulations show that the costs of the
closed-loops seem to converge for increasing horizon
lengths (see Fig. 2). In addition, it was investigated
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Fig. 2. Closed-loop cost of the MPC loop for a simulation
over a time period of T = 1.

whether the open-loop trajectories of the optimization
have the turnpike property which is the key property of the
optimal trajectories needed for proving near optimality of
the MPC solutions. The corresponding numerical results
will be presented in detail in the talk.

5. OUTLOOK

While the convergence of closed-loop costs can be ex-
plained by our theoretical results, it is not yet proven that
the state and control trajectories also converge. This will
be the subject of further investigations.
Another challenge is that the current implementation
scales poorly with the degrees of freedom of the finite
element discretization and therefore larger problems in
multidimensional domains have not yet been addressed. A
first approach to deal with this issue is the use of Proper
Orthogonal Decomposition as described in (Mechelli and
Volkwein, 2017). We are currently working with the au-
thors on a more efficient implementation of our problem.
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1. INTRODUCTION

Industrie 4.0 and IIoT introduce new challenges for dis-
tributed automation systems regarding the network. These
requirments include the distribtion of control logic, a high
degree of interoperability, the need for dynamic reconfigu-
ration and software reusability. All these requirements can
be fulfilled by the IEC 61499 which is a modeling language
for distributed control systems and can be seen as the suc-
cessor of IEC 61131. This trend towards highly distributed
control systems also causes new challenges for the network,
as the fastly growing number of network devices rises the
complexity of their configuration. Also, mixed-criticality
systems become more and more important which require
a convergent network (4) i.e., the transmission of traffic
with different characteristics on the same network cable,
like deterministic real-time traffic for motion control next
to traffic for data acquisition into the cloud. These new
requirements can be fulfilled by the new Time-Sensitive
Networking (TSN) Ethernet standard which is currently
standardized by the IEEE 802.1 Working Group. How-
ever, the configuration of TSN devices is time consuming
and error-prone because each networking device has to be
configured separately (1). The first step towards automatic
configuration of asynchronous, real-time capable networks
is the analysis of IEC 61499’s models (6) and their support
for network modeling (w.r.t. timing behavior, criticality
and complexity) and the identification of missing informa-
tion, that is needed to generate network configurations.

2. MODELING IN IEC 61499

Figure 1 shows the Application and System Model and
the relation between both which is represented by the
Distribution Model. The Application Model contains the
Function Block Network (FBN) representing the control
code. The execution of FBs is triggered by the event con-
nections (black lines between FBS in Figure 1). Multiple
connected FBs form an event chain which defines the
execution order of the FBs.

The System Model contains information about the phys-
ical composition of the distributed control system. This
includes devices, network segments and the interface to
the controlled industrial process. A device is for example

Fig. 1. Application, System and Distribution Model of IEC
61499

a specific Programmable Logic Controller (PLC) or an em-
bedded computer and the network segment could specify
the usage of Ethernet or a fieldbus like CAN or Profinet
for communication.

After defining available devices and implementing the
control algorithm as a Function Block Network (FBN),
the application is mapped by the engineer to the control
devices that are responsible for their execution. This
mapping is the Distribution Model of IEC 61499 which is
represented by the applications that are mapped to single
or multiple devices like shown in Figure 1. During this
process the network communication between the different
devices and their application has to be modeled manually
by the engineer using network Service Interface Function
Blocks (SIFB) (3).

Each of these SIFBs has to be created separately, first by
choosing the appropriate communication pattern such as
publish-subscribe or client-server, second by choosing the
protocol that shall be used for the communication e.g.,
UDP, MQTT or OPC UA and third by manually setting
up the communication parameters such as IP address and
port. After that the network devices need to be configured
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such that they meet the requirements of the distributed
application.

3. NETWORK MODELLING IN IEC 61499

This configuration process is very time consuming and
error-prone and can be automated by generating the nec-
essary parameters for industrial communication directly
from the models of IEC 61499. The first steps of modelling
the network using concepts of IEC 61499 is shown in the
next sections.

3.1 Available Data for Network Modeling

The Application Model provides the execution order of
FBs which are defined by event chains. The type of the
event source of a chain can also be derived to a cyclic
source which periodically triggers the event chain or an
asynchronous source without any periodic behavior. It
is also possible to model deadline for real-time FBs (2).
Furthermore, the communication pattern can be derived
from the FBN where event connections between FBs refer
to a publish-subscribe and adapters refer to a client-server
pattern.

The System Model provides an overview of all available
devices which are able to execute IEC 61499 compliant
control software and the connection of different devices
through network segments and corresponding links. Ad-
ditional capabilities of entities (not only devices, also for
segments, resources, etc.) can be modeled with Attributes
described in IEC 61499 Annex G (6). Attributes are typ-
ically expressing vendor specific data like CPU type, sup-
ported communication protocols or runtime environment
and more.

The Distribution Model provides the end-to-end con-
nections of traffic streams and can be used to derive the
appropriate parameters like IP address and port.

3.2 Missing Data for Network Modeling

The following paragraphs summarize requirements for
missing data in the models of IEC 61499 needed to
generate real-time capable network configurations.

The Application Model lacks a way to model the
criticality of events between FBs. This mixed-criticality is
necessary to model network determinism and can be used
to derive network parameters like VLAN and priority for
a stream in a TSN network. The sending times of events
are optional information which can only be used in cyclic
applications. The network transmission of events can be
used to optimize the TSN schedule.

The current System Model does not give precise in-
formation of the network segments. The definition of a
network segment in the IEC 61499-1 (6) is a “physical
partition of a communication network”. A higher accuracy
of the description of network segments was not necessary
when the standardization started, because most automa-
tion systems used a shared bus and where usually directly
wired to a ring of devices. With new emerging networking
technologies in the field of industrial automation such as
TSN, a more precise segment needs to be defined. The only

approach that seems suitable for a segment is to model
it like a single networking device e.g., a switch, router
or firewall. Segments and devices are connected via links
which results in the network topology. Modeled data of a
segment can for example be number of ports, link speed,
bandwidth etc. The logical modeling of a segment, for
example as a subnet containing one or more networking
devices, is not applicable, because the standard already
defines it as a physical partition.

The Distribution Model is not providing any possib-
lity to model the worst case execution time (WCET) of
FBs which are mapped on different devices. This data is
amongst others dependent on a more sophisticated device
model.

4. CONCLUSION AND FUTURE WORK

This paper showed an analysis of network modeling ca-
pabilities in the Application, System and Distribution
Model of IEC 61499. The goal is to provide an automatic
configuration for networks including real-time schedules
(e.g., for TSN). The next steps are to evaluate which
already existing modeling languages in the automation
domain (e.g., FDCML, EDDL, AML etc.) can be reused
for network modelling in IEC 61499, implement a first
prototype in 4diac 1 and finally contribute to an extension
of the IEC 61499 standard for network modeling based on
the results of the prototype.
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1. INTRODUCTION

The finite element method has grown to the standard way
to solve partial differential equations numerically. In the
area of structural dynamics this method discretizes the
partial differential equation

∇ · σ + b̂− % ü = 0 on Ω

with boundary and initial conditions u = û on ∂ Ωu,
σ · n = t̂ on ∂ Ωσ, u(t0) = u0 and u̇(t0) = u̇0. u are
the displacements of the structure. If the analyzed struc-
ture undergoes large deflections, the outcoming discretized
equation of motion

M ü(t) + f(u(t)) = BF (t) (1)

is nonlinear with respect to the restoring force f(u).

In applications such as design or control, the equation of
motion can depend on parameters that concern the shape,
material and boundary conditions as illustrated in Fig. 1.
These parameters can either be changed by the engineer
during construction (usually shape and material) or due
to operation conditions and control (usually boundary
conditions).

The dependence of Eq. (1) on these parameters can be
expressed by

M(p) ü(t) + f(p,u(t)) = B(p)F (t) (2)

where p ∈ P is a set of variable parameters.

Finite element models of complex geometries that appear
in engineering can have million degrees of freedoms which

Fig. 1. Parameterization of Structural Finite Element
Models.

Fig. 2. Computational savings with model reduction.

can lead to high computation costs when solving Eq. (1). In
applications such as design iterations or realtime control
where the equation of motion have to be solved several
times, a short simulation time is highly demanded. One
approach to satisfy this demand is model reduction. It
reduces the computation time by reducing the problem
dimension in a reduction step (offline) and then computing
the reduced smaller model (online). After a certain number
of simulations or calculated timesteps the total simulation
time can be reduced as illustrated in Fig. 2.

2. MODEL REDUCTION FOR FINITE ELEMENT
MODELS IN STRUCTURAL DYNAMICS

For equations of type (1) the model reduction is performed
in two steps. First, the number of unknowns is reduced
by a Galerkin projection. Second, the evaluation of the
nonlinear force term is sped up by hyperreduction.

2.1 Galerkin Projection

In order to reduce the dimension of the problem, i.e. the
number of unknowns, a Galerkin projection is performed.
Therein a lower-dimensional approximation of the relevant
system dynamics is done by

u = V q + ε ≈ V q
with the nonlinear reduction basis V = [V lin V nl] con-
sisting of a linear part V lin augmented with an addi-
tional nonlinear part V nl. The linear part is calculated
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Table 1. Possible combinations of methods for
calculation of the nonlinear reduction basis.

Linear part V lin Nonlinear part V nl

Modal truncation Vibration modes Modal derivatives

Static derivatives

Moment matching Krylov directions Krylov derivatives

Static derivatives

Other linear methods Linear basis vectors Exact derivatives

Static derivatives

using linear methods together with a linearized model
(e.g. Salimbahrami and Lohmann (2006)). The additional
nonlinear part consists of exact or static derivatives of the
linear basis vectors accounting for the nonlinear behavior
(e.g. Idelsohn and Cardona (1984)). Tab. 1 lists basic
combinations of methods that are used.

This leads to the projected and reduced system dynamics

V TMV q̈(t) + V Tf(V q(t)) = V TBF (t) .

The quality of the reduction basis and the associated
reduced system are evaluated and optimized via a specific
H2-norm for the error system.

2.2 Hyperreduction

Although the projection reduces the dimension of the
problem, its reduction of computation time is quite poor.
This originates from the evaluation of the reduced non-
linear restoring force V Tf(V q), because it still has to be
evaluated in the full element domain, i.e. for the physical
displacements u = V q. Hyperreduction methods have
been developed to overcome this issue.

The ansatz of Hyperreduction is to evaluate the elemental
restoring forces fe of a subset of all elements and extrapo-
late their contribution to the global restoring force vector
f instead of assembling the contibution of all elements:

V Tf(V q) =
∑
e∈E

V TBT
e fe(BeV eq)

≈
∑

e∈Ẽ⊂E

V TLeB
T
e fe(BeV eq) .

Different Hyperreduction methods differ in the way the

element subset Ẽ and the operator Le are chosen. One of
the most popular Hyperreduction methods for structural
problems is called the Energy Conserving Sampling and
Weighting (ECSW) method. It has advantageous proper-
ties when applied to mechanical problems, such as stability
and passivity (Farhat et al. (2014, 2015)).

3. PARAMETRIC REDUCTION

The consideration of parameter changes only needs a prior
suitable sampling of the parameter space P. Then the same
methods can be applied for each parameter sampling point
pi ∈ P (i = 1, 2, . . . , N) resulting in N different reduction
bases V (pi) and if necessary reduced systems Sr(pi) (e.g.
Benner et al. (2015)). Tab. 2 summarizes basic approaches
used within this framework.

Table 2. Methods used for parametric reduc-
tion.

Local approaches Global approaches

Basis updating V (pi) Concatenation to global basis[
V (p1) V (p2) · · · V (pN )

]
Basis interpolation V (pi) Global parameter-dependent

basis V (p)

Matrix/system interpolation Sr(pi)

4. RESEARCH CODE AMFE

Nonlinear model reduction methods have not been im-
plemented in commercial code so far. Furthermore, the
implementation of new developed methods is very tedious
in conjunction with commercial finite element code. There-
fore, an open source research code, called AMfe (Rutz-
moser (2017)), has been implemented that makes proto-
typing new model reduction methods easy. The code is
written in Python and provides easy access to internal
computations due to its modular structure. Several reduc-
tion methods have been implemented such as methods for
calculating reduction bases and hyperreduction methods
e.g. ECSW.

5. OUTLOOK

At current state only non-parametric nonlinear model
order reduction methods have been implemented in the
research code. The goal of current research of the authors
is to develop and implement new reduction techniques
for parameter dependent systems for applications such as
design, optimization and control systems.
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1. INTRODUCTION

Modern gas-turbines are typically operated under lean,
premixed combustion conditions due to emission restric-
tions. In this operating range, the flame is susceptible to
acoustic perturbations. Once perturbed, the heat-release
fluctuates, which acts as a monopole sound-source. Due
to interaction with the compressor, the turbine and the
combustor housing, these acoustic waves can be reflected
back to the flame, which establishes a feedback cycle.
When constructive interference occurs, the amplitudes of
this mechanism can grow and a thermoacoustic instability
develops that might limit the operating range, increase
material wear and even cause fatal damage.

In order to predict and avoid these instabilities, linear
time-invariant (LTI) models consisting of an acoustic part
(AC) for the wave propagation and an acoustic-flame in-
teraction model are often used. Due to the complex ge-
ometries found in gas-turbines, the models for the acoustic
propagation, e.g. based on the finite element method, can
become very large. In this contribution, a pilot study is
conducted in which model order reduction (MOR) tech-
niques are applied to a simple acoustic model. After the
reduction, a flame transfer function (FTF) is coupled to
the reduced acoustic system in order to account for the
acoustic-flame interaction. This a posteriori coupling al-
lows to change the FTF for parameter studies with only
one MOR of the acoustic system. The linear thermoacous-
tic stability analysis is conducted on both, the full- (FOM)
and the reduced-order model (ROM), by computing the
eigenvalues of the coupled systems. The suitability of three
MOR algorithms – modal reduction, truncated balanced
realization and the iterative rational Krylov algorithm –
is investigated based on the stability prediction of the
reduced models.

2. THERMOACOUSTIC MODEL

In this study, the thermoacoustic stability of a swirl
burner is investigated. The model for the acoustic wave
propagation is based on the 1D thermoacoustic network

? The work related to this contribution is supported by the German
Research Foundation (DFG), Grant LO408/19-1.

modeling tool taX 1 , while the acoustic-flame interaction
is governed by an FTF identified from a large eddy
simulation of the burner. The state-space representation
is used for both parts of the model, which facilitates easy
coupling and robust computations.

acoustic

Acoustic network model

Flame transfer function

perturbations
fluctuating
heat-release

u′ref Q̇′

Fig. 1. Coupling between the acoustic and the flame-
response model.

2.1 Acoustic network model

Within the scope of this pilot study, a low order, 1D
network model is used for the propagation of the acoustic
waves. Although the size of this model is rather small –
78 degrees of freedom – the basic principles learned from
MOR should be applicable to larger models as well.

The network model consists of simple elements, for which
the analytical solution of the wave propagation is known,
e.g. a duct with constant cross-section or an area jump. By
matching the wave amplitudes at the interfaces of these
elements, a network that represents the whole burner can
be established (see Fig. 1). In order to provide an interface
to the FTF, inputs and outputs of the acoustic state-space
model have to be chosen. Due to the velocity-sensitive
premixed flame, the acoustic perturbation in axial flow
velocity at a reference position u′ref is chosen as an output.

To account for the fluctuating heat-release Q̇′ of the flame,
an input is provided which translates these fluctuations to
acoustic waves.
1 The code for the software package taX can be found at http:

//gitlab.lrz.de/tfd/tax and its documentation at http://tax.

wiki.tum.de.
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2.2 Flame transfer function

The flame transfer function has a low-pass filter behavior
and relates axial velocity perturbations to heat-release
fluctuations. In state-space representation, the input of
the FTF is u′ref and the output is Q̇′. This allows for cou-
pling between the FTF and the acoustic network model.
Through the coupling, a monolithic state-space model is
retrieved which incorporates the whole thermoacoustic
dynamics.

3. MODEL ORDER REDUCTION OF THE
ACOUSTIC SUBSYSTEM

Our pursued workflow consists of first reducing the acous-
tic part of the thermoacoustic model before coupling the
acoustic ROM to the FTF. Another approach could be to
reduce the coupled system (AC+FTF) as a whole. The
former technique, however, is more advantageous, since it
allows to perform parameter studies of the FTF without
having to reduce the whole system after each parame-
ter variation. To reduce the acoustic model, three linear
MOR techniques from the sssMOR toolbox 2 are applied
(Castagnotto et al. (2017)). These techniques employ a
projection of the FOM onto a respective subspace to obtain
a corresponding ROM (Antoulas (2005)).

We compute the projection subspaces with different reduc-
tion methods, namely modal reduction (Davison (1966)),
truncated balanced realization (Moore (1981)) and the ite-
rative rational Krylov algorithm (Gugercin et al. (2008)).
Note that modal reduction – i.e. the preservation of some
eigenmodes – is state of the art in the reduction of acoustic
models, since these can be usually extracted directly from
FE solvers.

4. COUPLING THE REDUCED ACOUSTIC SYSTEM
WITH THE FLAME TRANSFER FUNCTION

After the model order reduction, the reduced acoustic net-
work model is coupled to the FTF. The eigenvalues of this
reduced coupled model are compared to the eigenvalues of
the full coupled model (full acoustic network model con-
nected to FTF). The complexity of this task lies in the fact,
that a good approximation of the eigenmodes of the acous-
tic subsystem will not guarantee a good fit of the coupled,
thermoacoustic modes between the FOM and the ROM.
This is due to the fact that the FTF significantly changes
the system dynamics. The investigated model exhibits
a low-frequent intrinsic thermoacoustic (ITA) eigenmode
which is marginally stable. This mode only occurs in the
coupled system (Hoeijmakers et al. (2014); Emmert et al.
(2016)). Due to its prime importance for thermoacoustic
stability, the quality of the ROM will be judged based on
the approximation of this mode.

A robust and efficient MOR algorithm is desired, which
produces a ROM that converges to the correct thermoa-
coustic eigenmodes, when coupled to the FTF. This study
investigates the convergence behavior of the three before
mentioned methods with respect to increasing ROM order.
2 sss and sssMOR are open-source MATLAB toolboxes available
under www.rt.mw.tum.de/?morlab or in GitHub under https://

github.com/MORLab.

It is known that the acoustic feedback mechanism between
the fluctuating heat-release and the velocity perturbations
at the reference position is of major importance for the
intrinsic eigenmode. It is therefore expected that the model
reduction algorithms focusing on exactly this transfer
behavior from Q̇′ to u′ref (TBR and IRKA) will yield better
results than the modal MOR (cf. Fig. 2). This and further
aspects will be discussed at the conference.
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Fig. 2. Error between the ITA eigenfrequency of the FOM
(λITA) and the ROMs (λITA,r) with the three different
reduction algorithms depending on the orderNr of the
reduced acoustic system.

5. OUTLOOK: LARGE-SCALE ACOUSTIC SYSTEMS

Based on the experience gained from the small-scale net-
work model case, suitable ROM techniques need to be
developed for large-scale (aero-)acoustic models with up
to 106 degrees of freedom. Major challenges are the 3D
effects and hydrodynamic-acoustic interactions, which are
not included in the network model.
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1. INTRODUCTION

The “Modern Taylor Series Method” (MTSM) is the nu-
merical integration method that can numerically solve
ordinary differential equations (ODEs). The method cal-
culates terms of the Taylor series recurrently for each
integration step. The number of calculated terms is gen-
erally different for every step and it depends on a de-
fined accuracy of the calculation. Model implementation
of MTSM (TKSL software package, Kunovský (1994)),
is limited by maximal number of equations and double
accuracy.Therefore the method is currently being tested
and reimplemented in MATLAB.

Several papers focus on computer implementation of the
Taylor series method in a variable-order and variable-step
context (see, for instance, Abad et al. (2015), the TIDES
software or in Jorba and Zou (2005)). The reduction of
rounding errors Rodŕıguez and Barrio (2012) and utiliza-
tion of multiple arithmetic Barrio et al. (2011) improves
the applicability of Taylor series based algorithms.

This paper demonstrates that the MTSM, specialized to
directly solving nonlinear-quadratic ODE systems, solves
non-stiff and in some cases stiff systems very fast (in
comparison with MATLAB implementation of explicit and
implicit ode solvers) and outperforms standard solvers in
the considered benchmark problems. This paper is closely
connected with Šátek et al. (2015) where effective solution
of linear ODE systems using MSTM was introduced.

2. SCHEME FOR QUADRATIC ODES

In this article, we have focused on effective solution of
special case of nonlinear-quadratic systems of ODEs. The
nonlinear-quadratic systems of ODEs is any first-order
ODE that is quadratic in the unknown function. For
such system Taylor series based numerical method can be
implemented in very effective way.

The best-known and most accurate method of calculating
a new value of a numerical solution of ordinary differential
equation y′ = f(t, y), y(0) = y0 is to construct the Taylor
series Hairer et al. (1987).

The n−th order method uses n Taylor series terms in the
explicit form

yi+1 = yi + hf(ti, yi) +
h2

2!
f [1](ti, yi) + · · ·

+
hn

n!
f [n−1](ti, yi).

(1)

Equation (1) for nonlinear-quadratic systems of ODEs can
be rewritten in the form

y′ = Ay2 + Byjk + Cy + b , (2)

where A ∈ Rne×ne is the matrix for pure quadratic
term, B ∈ Rne×ne(ne−1)/2 is the matrix for mixed
quadratic term, C ∈ Rne×ne is the Jacobian matrix for
linear part of the system and b ∈ Rne is the right-
hand side for the forces incoming to the system. The
unknown function y2 represents the vector of multipli-
cations (y1y1, y2y2, . . . , yneyne)

T ; the unknown function
yjk represents the vector of mixed terms multiplica-
tions (yj1yk1

, yj2yk2
. . . , yjne(ne−1)/2

ykne(ne−1)/2
)T . The in-

dices j, k come from combinatorics C(ne, 2) and symbol
ne stands for the number of equations in ODE system.
For simplification we suppose that the constant matrices
A,B,C and the constant vector b are used in system (2).

Higher derivatives of such systems (2) can be effectively
computed in MATLAB software MathWorks (2017) using
matrix-vector multiplication, e.g. higher derivative y[p] for
pure quadratic term with matrix A should be expressed
as

y[p] = A

(
p−2∑
i=0

y[p−1−i]. ∗ y[i]

(
p− 1

i

)
+ y. ∗ y[p−1]

)
, (3)

where the operation ‘.∗’ stands for element-by-element

multiplication, i.e. y[p1]. ∗ y[p2] is vector (y
[p1]
1 y

[p2]
1 , . . . ,

y
[p1]
ne y

[p2]
ne )T . The binomial coefficients

(
p−1
i

)
can be effec-

tively precomputed using Pascal triangle, for more infor-
mation see pascal function in MATLAB software.

3. NUMERICAL EXPERIMENTS

All algorithms are implemented in Matlab 2015a and com-
putations are partially performed on SALOMON super-
computer at IT4Innovations VŠB-TU Ostrava
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Fig. 2. Order of MTSM for D4 stiff problem

IT4Innovations (2017). Relative and absolute tolerance
for all computations was set to 10−7. Classical double
precision arithmetic has been used in our examples and
maximum order of Taylor series was set to ORD = 60.

Vectorized MATLAB code of explicit Taylor series exp-
Tay with a variable order and variable step size scheme
for nonlinear-quadratic systems of ODEs (2) has been im-
plemented. This algorithm was compared on a set of “non-
stiff” nonlinear-quadratic systems (see Enright and Pryce
(1987)) with vectorized MATLAB explicit ode solvers.
Benchmark results are shown in table 1 (each reported
runtime is taken as a median value of 100 computations).
Ratios of computation times ratio = ode/expTay > 1
indicate faster computation of the MTSM in all cases (see
used orders in Fig. 1).

Table 1. Time of solutions (non-stiff systems):
explicit Taylor expTay and MATLAB explicit

ode solver comparison

ode23 ode45 ode113 expTay
problem ratio ratio ratio [s]

B1 30.67 2.05 1.57 0.0323
B3 14.79 1.65 1.34 0.00965
B5 29.54 2.17 1.28 0.0201
E4 17.1 2.12 2.19 0.00276

The MTSM, due to the higher order, has some positive
properties for stability of the solution. Thanks to these
properties it can be effectively used for solution of moder-
ately stiff problems. In table 2 one can see the comparisons
expTay method with implicit MATLAB ode solvers (see
used orders in Fig. 2).

Table 2. Time of solutions (stiff systems): ex-
plicit Taylor expTay and MATLAB implicit

ode solver comparison

ode15s ode23s ode23t ode23tb expTay
problem ratio ratio ratio ratio [s]

C1 1.07 21.21 14.99 14.53 0.0849
C2 1.03 20.05 14.05 13.34 0.0823
D1 0.23 24.75 2.9 2.33 0.569
D3 2.12 19.55 19.4 17.28 0.065
F3 1.2 15.31 13.14 11.75 0.0359

4. CONCLUSION

The Taylor series scheme (after MATLAB vectorization)
seems to be very efficient for solution of some types of
nonlinear-quadratic ODEs. In many cases it significantly
outperforms standard solvers on the considered bench-
mark problems.

Detailed information and more results will be presented at
the conference.
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Rodŕıguez, M. and Barrio, R. (2012). Reducing rounding
errors and achieving brouwers law with taylor series
method. Applied Numerical Mathematics, 62, 1014–
1024.
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1. INTRODUCTION

In Middle-Europe a significant increase in solar energy 

production can be achieved by applying solar tracking in 

photovoltaic (PV) farms. According to the technical literature 

between 20% (Zsiborás) and 40% (www.astrasun.hu) plus 

energy has been measured with solar tracking compared to 

energy production of fixed PV farms e.g. in Hungary. 

However this high achievement is only true if a single module 

arrangement is rotated as a unit with no neighbouring modules. 

How much plus energy can be expected in case of several 

rotated modules placed near to each-other compared to fixed 

panels occupying the same surface? There are papers in the 

technical literature partly answering this question, e.g. how to 

optimize solar field design for single axis tracking 

(Appelbaum) and for stationary collectors (Weinstock). 

If the basis for the comparison is the total surface occupied by 

a solar field made up of PV modules placed densely near to 

each-other, then the plus energy can be less than the expected 

maximum, since the modules begin to shadow their 

neighbouring panels when being rotated. This shadowing can 

be reduced by applying gaps between the rotated units, 

however than a part of the total surface is inactive for energy 

production thus lowering the resulted energy yield. 

This paper proposes a mathematical method to determine the 

optimum gap dimensions between the rotated modules both in 

East-West and North-South direction which arrangement 

assures maximum solar energy produced by two-axis tracking 

on a certain area. 

2. DIMENSIONS AND PRECONDITIONS

Dimension of the PV module rotated as one unit is a in East-

West direction with a gap c between the neighbouring modules 

and b in North-South direction with a gap d between them 

(Fig. 1). Thus the total area occupied by one module is 

A = (a+c)(b+d) and this area serves as basis for the comparison 

of energy yields in case of different c and d values. The active 

part of the basis area is Aa = ab producing PV energy. 

For the first step of developing the mathematical method the 

following preconditions are taken into account: 1. Modules are 

placed on a horizontal surface. 2. An internal module will be 

analysed surrounded by other modules in every directions, i.e. 

to the north, north-east, east, south-east, south, south-west, 

west and north-west. 3. Modules face always perpendicular to 

the direct solar radiation, so they rotate and tilt continuously. 

4. Only clear weather is taken into account without any clouds.

5. Shadows have always sharp edges on the panels in any

distances only core shadow is taken into account. 6. The 

method is valid only locations with latitudes between the north 

polar circle and the Tropic of Cancer. 

Fig. 1. Dimensions of the PV modules laying horizontally. 

3. EQUATIONS OF THE CALCULATION

3.1 Equations of the Sun’s path 

Since the Sun’s path is symmetrical to the solar south direction 

it is enough to analyse one half of its path. Thus the panels are 

rotated from their position facing south to their direction at 

sunrise increasing the so called β hour angle. The dependence 

of α solar elevation angle on the β hour angle is 

sin 𝛼 = sin Φ sin 𝛿 + cos Φ cos 𝛿 cos 𝛽         (1) 

where Φ is the latitude of the location of the PV panels (48.21° 

in case of Vienna) and δ is the declination at the given day 

which can be calculated with 

𝛿 = −23.44 cos (
360

365
 (𝑁 + 10))  (2) 

where N is the number of the given day. N = 172 in case of the 

21st of June. On this day the declination is maximum, i.e. 

δ06.21 = 23.44°. Then with the help of (1) the hour angle of the 

sunrise is βSr = 119.02° for the latitude of Vienna. 
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3.2 Equations for calculating the shadowed area 

The shadow thrown by a neighbouring panel onto the PV panel 

under investigation has a horizontal dimension e and a vertical 

dimension f. Geometry of the panels is shown in Fig. 2 for hour 

angles 90° ≤ β ≤ βSr for the calculation of dimension e and in 

Fig. 3 for the calculation of f. 

Fig. 2. Upper view of the panels for 90° ≤ β ≤ βSr. 

Fig. 3. Lateral view for calculating f for 90° ≤ β ≤ βSr 

Within the frame of this extended abstract only the shadow 

thrown by the Eastern neighbour and the gap dimension c is 

analysed. Horizontal dimension of the shadow thrown by the 

Eastern panel for hour angles 90° ≤ β ≤ βSr is 

𝑒𝐸2 = 𝑎 − (𝑎 + 𝑐) cos(180 − 𝛽) (3) 

and for hour angles 0° ≤ β < 90°  

𝑒𝐸1 = 𝑎 − (𝑎 + 𝑐) cos(𝛽). (4)

Vertical dimension of the shadow thrown by the Eastern panel 

in the range of 90° ≤ β ≤ βSr is 

𝑓𝐸2 = 𝑏 − (𝑎 + 𝑐)sin(180 −  𝛽)sin𝛼 (5)

and the vertical dimension of the shadow thrown by the 

Eastern panel in the range of 0° ≤ β < 90°   is 

𝑓𝐸1 = 𝑏 − (𝑎 + 𝑐)sin𝛽sin𝛼. (6) 

4. CALCULATION OF THE OPTIMUM GAP SIZE

For this first step of analysis dimensions a and b of the panel 

result unit surface, i.e. Aa = ab = 1 not taking account 

dimensions. The part of the surface of the panel exposed to 

direct sunlight produces unit power and the shadowed surface 

part only 0.1ef power (https://wikipedia.org.wiki.Solar-

tracker). Then this value is divided by the total area A occupied 

by the panel. Thus the resulted normalized power produced by 

the panel at a certain angle β is  

𝑃(𝛽) =
𝑎𝑏−0.1 𝑒(𝛽)𝑓(𝛽)

(𝑎+𝑐)(𝑏+𝑑)
,       (7) 

where d = 0 for this analysis. Then the power values are 

summarized for every integer β angle values being 

proportional to time. This result is signed with letter W, 

referring to the PV energy production. 

Calculations has been performed with the mathematical 

software MAPLE. In Fig. 4 dependence of W on the gap 

dimension c is shown. The found maximum value belongs to 

c = 0.45 (approximately), i.e. 0.45 times a. 

Fig. 4. Plot of W vs gap dimension c. 

5. CONCLUSIONS AND FURTHER WORK

Results of the calculation verify the expectation that there is an 

optimum gap size between PV panels even in case of taking 

into account only two panels. As next steps the other 

neighbouring panels and the dependence of the irradiation 

intensity on the hour angle will be taken into account. 
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1. INTRODUCTION

In order to describe the transient thermal behavior of an 

automotive cabin, we need to model the energy and mass 

exchanges between the cabin system and the environment as 

well as these exchanges inside the cabin system itself. 

Given that the cabin model and its environment are intended 

to be integrated into a control loop, we have adopted a system 

level modelling (0D) based on the Bond Graph approach 

[Paytner 1961]. The simulator, thus built, results in a set of 

nonlinear Differential Algebraic Equations (DAE). As part of 

this work, we will use the Discrete Empirical Interpolation 

Method (DEIM) [Chaturantabut 2010] to solve DAE only for 

a selection of explanatory variables. This is a way to build a 

Reduced Bond Graph by decreasing the number of solved 

differential equations. 

2. CABIN THERMAL MODEL AND REDUCTION

METHODOLOGY 

2.1 Cabin thermal model 

In bond graph approach applied to thermal domain, two 

elements exchanging an energy are linked by a line (Bond). 

The heat flux exchanged between the two elements is 

expressed as the product of the temperature   (effort 

variable) and the entropy flux s  (flow variable). The line is 

also completed with a half-headed arrow indicating the 

positive direction of heat transfer, and a causal line indicating 

which of the two elements receives the effort variable and 

returns the flow one. 

Figure 1 shows the bong graph associated to the thermal 

conduction through a wall represented by an internal and an 

external thermal capacitance connected through an equivalent 

thermal conductance. 
wi

 and
we

 are respectively the

temperatures of the internal and external surfaces of the wall. 

int
s  and 

ext
s  are respectively the internal and external entropy 

fluxes. 

Fig. 1. Bond graph modelling of thermal conduction through 

a wall. 

For a cabin system containing a number Nw  of walls and a 

number Na  of air zones, the global thermal bond graph leads 

to the nonlinear first order DAE system (1):  
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Where  2N Nw Na  , θ
N is the unknown 

temperatures and absolute humidities vector defined by (2), 

 φ θ,u; μ
N  is a nonlinear function deduced from energy 

and mass balances, u Nu  contains the bong graph input 

variables, μ N  is a set of the bond graph parameters, 

2

w
θ

Nw  is the vector of all walls internal 
wi

 and external

we
 temperatures, and 2

a
θ

Na  is the vector of all air zones 

temperatures 
a

 and absolute humidities x.

2.2  Reduction Approach 

In order to build a Reduced Order Model (ROM), we need to 

construct a matrix of all possible responses of the studied 

system, and then extract some empirical modes from this 

matrix. However, such a matrix requires an infinite memory 
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storage size if all possible parametric and input predictions 

are considered. 

The model reduction approach, proposed here, begins with an 

unsupervised machine learning phase to develop the Reduced 

Order Model (ROM), followed by an online phase to use the 

reduced model already built. During the machine learning 

phase, a reduced basis N  n
V

  is constructed using an n-

order Truncated Singular Value Decomposition (Truncated 

SVD), also called Principal Component Analysis (PCA), 

applied to a matrix of L different input and parameter sets 

simulations, randomly selected. This matrix
 N   

A
L m

 , 

where m is the time points number for each simulation, is 

defined by:  

 
 

 

with  ,   1 ,   1

l l
A t

ij i k ini

j l 1 m k k m l L

  

      

( ) ( )

.

(3) 

Where  l

i k
t ( ) represents the ith element of the unknown 

vector at time tk using the system inputs and parameters 

 ( ) ( )
;

l l
u   which are generated from a Design Of Experiment

(DOE). We point out that subtracting the initial temperature 

in (3) is a trick that we propose to make the initial error null. 

The reduced basis construction is then completed by a 

selection of state variables: using the DEIM, we obtain a list 

of interpolation indexes that we complete with some air zones 

indexes to form thereby the list 𝒫. Our reduction approach 

consists of choosing the temperatures  θ  as the ROM

explanatory variables. We write 
r
θ  these variables, which 

satisfy the following equations: 

r
 ˆθ V (4) 

  V̂ ,: I (5) 

            
1

T T


     V̂ ,: V ,: V ,: V ,: V ,: (6) 

 1, ..., \N  (7) 

Where (6) is given by the Gappy POD method [Everson 

1995] which allows to reconstruct a field by measuring it 

only in some explanatory points that form the Reduced 

Integration Domain (RID) [Ryckelynck 2005]. 

In practice, this approach is non-intrusive for bond graphs 

since we just need to add the linear constraint 

     t t   ˆθ ( ) V θ ( ) .

The ROM DAE system (8) is then obtained by projecting the 

original DAE system (1) onto the subspace   V̂ ,: I : 
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θ θ

ˆ ˆV ,: θ φ Vθ ,u; μ 0 ,

r ini

r r f

t

d
t t

dt

   



        

(8) 

If we want to build a Reduced Bond Graph at this stage, we 

will need to reconstruct all walls internal temperatures, which 

limits the ROM speedup. In fact, these temperatures are 

necessary to calculate the total internal convective heat flux 

received by walls-adjacent air zones, and then determine their 

temperatures. In a perspective similar to [Ryckelynck 2015] 

where displacements as well as stresses fields are used to 

build a hyper-reduced model, we propose to perform, in 

addition to temperature variables reduction based on the 

matrix A, a similar treatment on internal convective heat flux 

variables in order to reduce the computational time related to 

internal convective heat fluxes calculation. 

3. APPLICATION

We apply here the reduction approach to a cabin thermal 

model with 18Nw  , 1Na  , n = 6, tf = 14400 s, and by 

varying 8 continuous inputs and parameters: vehicle speed, 

ambient temperature, vehicle initial temperature, ambient 

humidity, solar irradiance as well as the mass flow rate, 

humidity and temperature of the air supplied by AC system. 

We note that, for this application, only internal and external 

walls temperatures were exported to form the matrix A. 

We obtain a CPU time reduction by 30 %. Concerning the 

accuracy of the ROM, we generate a new DOE of 500 points, 

and then draw a histogram of simulations mean squared 

errors on air zone temperature, which is shown in Figure 2. 

Fig. 2. Simulations mean squared errors histogram 

Among the 500 simulations launched, 477 simulations are 

characterized by a mean squared error of less than 12.5%     

(equivalent to 1K), which is sufficient for air zone 

temperature regulation scenarios. 
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1. INTRODUCTION

Cyber Physical Systems (CPS) are inherently complex and
incorporate interacting heterogeneous subsystems. Model
based design of complex CPS is a multi-scope, multi-aspect
challenge. In the design process of such systems, usually
many different models are built. These models describe
elements of the system at different levels of detail and
under different assumptions, or the overall behaviour of the
system in a coarse manner. Currently much effort is spent
on testing and on the often costly correction of design
flaws which could be reduced if an integrated model-
based design approach were used. On the other hand,
the required effort for building all-encompassing models
of complex systems is often prohibitive, so the modeling
efforts should be focused on those aspects which are crucial
for the correct interaction of the elements and system
function. Therefore a methodology for the integration of
heterogeneous models on different levels of detail and
abstraction is needed.

Based on available literature it is evident that there are
currently two main approaches to this integration - co-
simulation frameworks and abstractions of component
models. Co-simulation frameworks enable the simulation
of numerous inter-connected sub-models, but assume mod-
els on the same level of detail to enable a tight coupling.
On the other hand, e.g. Sabetta et al. (2005) suggest
transformations of component models into abstractions,
assuming model components based on the Unified Model-
ing Language (UML). For a heterogeneous set of models on
different levels of detail and different levels of abstraction
that are formulated using different modelling concepts,
another approach must be taken. The European project
MULTIFORM (Hüfner et al. (2012) and Moneva et al.
(2011)) introduced a design framework for the manage-
ment of heterogeneous CPS models. The work presented
here builds on ideas from MULTIFORM. We introduce
the idea of generating abstractions of detailed models and

? The presented work has received funding from the European
Union’s Horizon 2020 Framework Programme for Research and
Innovation under grant agreement no 674875.

simulations and embedding them into models that are set
up in a different formalism. Useful information can thus
be conveyed in a simplified manner from one model to the
other.

2. COMPREHENSIVE CPS MODELING USING
PARTIAL MODELS

The following hypotheses are assumed based on typical
industrial development practice:

(1) Models are built to answer specific design questions
and serve different purposes during the different de-
sign stages of a CPS. These models therefore cover
different elements, aspects and scopes of the system
being developed which gives rise to a large amount of
models that are expressed in different formalisms us-
ing specialized software tools and languages. Together
they constitute a partial representation of the system
as a whole.

(2) Information which is properly propagated across the
abstraction hierarchy can efficiently support the de-
velopment of a CPS by facilitating and enabling
design activities that are dependent on information
generated by earlier or parallel investigations.

In typical design sequences, information is propagated
from one design model to another in an ad hoc manner
analysing and abstracting simulation, optimization or ver-
ification results without algorithmic support. To enable
model management and information propagation using a
computer based approach, model abstractions that pro-
vide a simplified representation of a detailed component
model or of its behavior from one model to the other
should be generated. For instance, detailed models that are
developed to provide information corresponding to what
is directly observable in a real system, i.e. comparable
to measurements of an implementation of the system or
component could be stripped to the essentials for other
design activities. Such an abstraction has the potential
to support model inter-operation between different levels
and horizontally on the same level of abstraction. This
approach also enables design tasks that would otherwise

ARGESIM Report 55 (ISBN 978-3-901608-91-9), p 105-106, DOI: 10.11128/arep.55.a55272 105

MATHMOD 2018 Extended Abstract Volume, 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018



not be possible, i.e. a design activity can embed informa-
tion that has not be accessible and thereby can include
simulations that were not possible earlier. This approach
will first identify model dependencies, and then fit one
or several models in the target modelling formalism to
simulated data.

3. USE CASE: WATER LOCK DESIGN

The challenges discussed above are described through a
pertinent use case that was carried out together with a
large European organization that commissions, develops
and maintains water locks. The organization uses an ex-
tensive model-based approach in all major design steps.
Currently model interactions are heavily dependent on in-
formal exchanges of information between model designers,
and model management is mainly documentation based.
In the overall water lock development process a large set
of tools are used as there are specialized tools available for
each specific design task.

Various design alternatives are evaluated based upon
coarse, system wide models. After a concept has been
decided upon, numerous Computational Fluid Dynamic
(CFD) simulations are carried out with the ultimate goal
to determine the filling and emptying times based on sur-
rounding conditions and the specific canal and lock compo-
nent dimensions. The simulations aim at capturing worst-
case scenarios in order to formulate conservative design
requirements. Subsequent activities involve mechanical,
electrical and control systems design.

In the following, we discuss the interaction between a
lock specific CFD model and a model that is used to
synthesize supervisory controllers for water locks using
hybrid automaton models of the lock operations. These
are developed in the open source tools LOCKSIM and
the Compositional Interchange Format (CIF) (Reniers
et al. (2017)). The supervisory controller that is generated
on the basis of the CIF operations model developed
by Reijnen et al. (2017) is validated using a hybrid-
automaton plant model that was also developed in CIF.
The plant model is based on a number of assumptions
about the hydrodynamic behaviour - assumptions that are
based on lock design requirements. Only static information
is communicated through this strategy and the model
is therefore disregarding hydrodynamic conditions and
events that could potentially affect the emptying and
filling times that are relevant for the validation, such as an
abundance or deficiency of rain water and the associated
soil conditions.

Operations

CIF

Supervisory

controller

Lock operations

Waterway objects

CFD 3D

Water surface

CFD 2D

Abstraction of

hydrodynamics

Hydrodynamics
Requirements

Water levels

CFD 1D

Filling/emptying 

times

Fig. 1. Concept of supporting design activities by embed-
ding abstracted models that result from other simu-
lation studies.

Inside the plant model developed by Reijnen et al. (2017),
the evolution of the water level is currently described by a
differential equation (DE) in a separate automaton. This
DE provides a coarse approximation of the evolution of
the change of the water level based on sensor readings of
the lock paddle positions and culvert flows. Extending the
plant model with another set of automata that contain
different dynamic models extracted from the CFD model,
would allow the supervisory control designer to carry out
more accurate validations and to update the requirements
accordingly. Figure 1 illustrates the suggested generation
and embedding of abstractions.

The CFD simulations clearly showed that emptying and
filling times are dependent on the state of the environment.
If for instance the ground is saturated with water due to
rain, water flow into and out of the water lock chamber
is significantly affected. To create an abstraction of the
CFD model, a number of simulations are run with different
inputs to cover the range of probable water conditions
relevant to the lock operations model. Simulation results
are then approximated by a set of models, for which the sit-
uation can be assumed to change very slowly compared to
the time scale of the reaction of the supervisory controller.
These different approximate models are represented as
automata in the CIF plant model and are connected one by
one to the overall model to generate new simulated sensor
readings of the evolution of the water levels depending on
given sensor inputs on lock paddle positions and culvert
flows from the plant model.

4. CONCLUSION

This paper introduced the idea of generating abstractions
of detailed design models to embed into models expressed
in other formalisms during the development of complex
CPS. The idea is described through a use case of water
lock development in which detailed hydrodynamic models
can be embedded into hybrid automata developed for the
generation of supervisor controllers.
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1. INTRODUCTION

Dielectric elastomer transducers (DETs) are deformable 

capacitors, made by highly elastic dielectric layers coated 

with compliant electrodes. They are electrostatic devices that 

make it possible to convert mechanical energy into direct 

current electricity and vice-versa (Carpi et al. (2008)). As 

such, they can be used to conceive solid-state electrostatic 

actuators, generators and sensors exhibiting the following 

properties (Carpi et al. (2008)): large energy and power 

densities; ease of manufacture and integration; good 

resistance to shocks and corrosion; silent operation; low cost. 

Recently, commercial rubber membranes made of silicone 

elastomers, natural rubber and styrenic rubber demonstrated 

excellent electromechanical properties for the development of 

high energy density DETs. In particular, in experimental 

applications as generators, inflatable DETs based on silicone 

elastomers made it possible to consistently convert pneumatic 

energy into electricity at an energy density per cycle greater 

than 150 J/kg (see for instance Moretti et al. (2017)) and 

greater than 400 J/kg in case of styrenic rubber.  

These experimented performances can however be sustained 

for a limited number of cycles only, after which the DET fails 

irreversibly. To date, very little information is available on 

the fatigue life performances of dielectric elastomer materials 

and of the transducers made thereof (Kornbluh et al. (2010)). 

Having identified electrical breakdown as the most probable 

mode of DET failure (Kornbluh et al. (2010)), this work 

reports and discusses on a set of lifetime constant electric-

stress tests conducted on frame stretched circular DET 

specimens made of a styrenic rubber.  

2. EXPERIMENTAL

An experimental test-bench (see Fig. 1) has been purposely 

developed for the simultaneous testing of a batch of up to 16 

DET specimens by subjecting them to cyclic loading with 

general electric field waveforms and no controlled force or 

displacement. The test-bench features fully automated 

operation and data acquisition/saving, including automatic 

detection and isolation of broken DETs. 

Three different batches, each made of 16 frame-stretched 

circular DET specimens, were prepared using a custom made 

styrenic rubber as elastic dielectric, carbon grease as 

compliant electrodes and a Delrin holed plate as a clamping 

frame (see Fig. 2). All specimens were identical: 25 mm in 

diameter , 27 m in thickness t and with 2.6 pre-stretch. 

The developed experimental test-bench was used to perform 

lifetime constant-stress tests on the prepared specimen 

batches by subjecting them to square wave electric field 

signals with 50% duty-cycle, 1 Hz frequency and with the 

following amplitudes: 127 MV/m for the first batch, 100 

MV/m for the second batch and 70.3 MV/m for the third 

batch. 

Fig. 1. Experimental set-up used for lifetime characterization. 

Fig. 2. Frame-stretched circular DET specimens: 1 batch of 8 

specimens during test (on the left), schematic of one 

specimen (on the right). 
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Fig. 3. Weibull plot of lifetime for specimen batches tested at 

different electric field levels. 

Obtained results showed that identical specimens tested at the 

same level of applied electric field fail at different numbers 

of cycles, with a rather wide spread of the data. This 

indicated that electrical breakdown of DETs is a stochastic 

process.  

Acquired data were then manipulated via the Ross’s method 

(as described in the standard IEC 62539) to calculate the 

probability of failure associated to each broken specimen. 

Results are shown in Fig. 3: red circles for the batch tested at 

127 MV/m, blue circles for the batch tested at 100MV/m, 

black circles for the batch tested at 70.3 MV/m. 

3. MODEL

An analytical model was developed to correlate the number 

of cycles to failure to the time-law of application of electric 

field loads. 

Following a practice existing in the power cables industry 

(see for instance Dissado and Fothergill (1992)), we have 

assumed that the time-to-breakdown dependency on applied 

electric field of a DET can be described by a Weibull 

probability distribution in the form: 

    
1

0

, 1 exp

t

ba

F
P E t c at E t dt



  
 
 
 



which, for square wave electric field signals becomes 
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where a, b, Ec and Nc are parameters to be found via 

numerical fitting of experimental data, while E is the 

amplitude of the electric field signal. N
E

c is called the

characteristic life, whereas MCTFE is the mean cycle to 

failure. 

The model was then fitted to the acquired experimental data. 

Results are shown in Fig. 3 with dash-dotted lines (dotted 

lines represent 90% confidence bounds). 

4. DISCUSSION

Results highlight: 

 a strong dependency of DET lifetime on the level of

applied electric field; in particular, lifetime decreases as

the electric field amplitude is increased;

 the proposed model is adequate to capture the

correlation between level of electrical loading and

failure in DETs;

 the custom made styrenic rubber shows a MCTF higher

than 7000 cycles when loaded with an electric field

amplitude of 70.3 MV/m; this lifetime is larger than that

reported in Kornbluh et al. (2010) for DET specimens

based on acrylic elastomers (VHB 4910 by 3M) and

subjected to the same electric field level.

6. CONCLUSIONS

This work described the approach, experimental set-up and 

procedures that have been developed to characterize the 

lifetime of dielectric elastomer transducers (DETs) against 

electrical loading. In addition, it reported and discussed the 

results obtained from the lifetime testing of frame-stretched 

circular DET specimens based on a custom-made styrenic 

rubber. The proposed methodology and obtained 

experimental results can be used in a design procedure to find 

optimal trade-offs between DET performance and 

lifetime/reliability. 

Future work on lifetime characterization of DETs will 

consider: 1) effects of electrical loading frequency; 2) effects 

of specimen size; 3) effect of specimen pre-stretch; 4) other 

materials such as silicone elastomers; 5) mixed electro-

mechanical loading. 
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1. INTRODUCTION

Progress in magnetic resonance imaging (MRI) often relies
on optimal design of radiofrequency (RF) pulses. The aim
is usually to perform a specific excitation/refocusing of
the nuclear magnetization vector, whose dynamics can
be predicted by the Bloch equations. However, RF pulse
design is not a trivial task and different approaches were
proposed, see e.g. Conolly et al. (1986), Pauly et al. (1991),
Rund et al. (2017).
Here, a flexible optimal control model based on the Bloch
equations is introduced. The main technical restrictions
of a MR scanner hardware are modeled as inequality
constraints. An optimization method based on a combined
semismooth Newton/quasi-Newton method, penalty met-
hods and trust-region globalization is built. The method is
extended to time-optimal control for designing minimum-
duration RF pulses. The methods are tested in realistic
numerical experiments. The optimized RF pulses are vali-
dated in phantom experiments on a 3T MR scanner.

2. MODELING

Broad clinical imaging applications are based on slice-
selective excitation (single-slice or recently simultaneous
multislice acquisition Barth et al. (2016)), where data for
one or multiple slices are collected at each acquisition. The
modeling is here usually done in 1D, where a slice is defined
as covering an interval in z-direction and extending along
the other two directions x and y. The dynamics of the
nuclear magnetization vector M is then modeled using
the Bloch equation (without relaxation and in the rotating
frame of reference)

Ṁ(t, z) = γB(t, z)×M(t, z), M(0, z) = M0(z)(1)

with spatial position z ∈ (0, L), L > 0, time t ∈ I = (0, T ),
and T > 0. The initial condition M0(z) is typically the
steady state, i.e. aligned with the strong constant external

? This work is partially funded by the Austrian Science Fund
(FWF) in the context of project ”SFB F32-N18” (Mathematical
Optimization and Applications in Biomedical Sciences). Partial
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magnetic field (in z-direction) M0(z) = M0(z)(0, 0, 1)T

with equilibrium magnetization M0(z) > 0. The MR hard-
ware allows a user-defined input of amplitudes of different
magnetic fields, which are the RF pulse (u(t), v(t)) and
the amplitude of the slice-selective gradient w(t). These
magnetic fields superpose to B(t, z) = (u(t), v(t), w(t)z).

3. MODELING OF THE OPTIMAL CONTROL
PROBLEM

RF pulse design typically aims at designing the time-
dependent amplitudes u(t) = (u(t), v(t), w(t)) in order
to optimize the competing goals of a minimum specific
absorption rate (SAR), a minimum duration T , and an
optimal slice profile accuracy at the terminal time T . The
first two goals give rise to two objective formulations. For
single transmit MRI the SAR is proportional to the power
of the RF pulse, which leads to the objective

min
u(t)

Je =
1

2
‖r‖2L2(I) +

αw

2
‖w‖2L2(I)(2)

with u = r cos(ϕ), v = r sin(ϕ) and u2 + v2 = r2.
Alternatively, we minimize for the duration

min
u(t),T>0

Jt = T +
αr

2
‖r‖2L2(I) +

αw

2
‖w‖2L2(I).(3)

In both cases, αw, αr > 0 denote regularization para-
meters. The third goal (best approximation of a space-
dependent desired magnetization pattern in L2 or L∞) is
posed as nonlinear state constraint

g(M(T, z)) ≤ 0, ∀z ∈ (0, L).(4)

Technical constraints on the scanner hardware are modeled
as box constraints

0 ≤ r ≤ rmax, |w| ≤ wmax(5)

as well as slew rate constraints ẇ ≤ smax and a power
constraint for the time-optimal setting ‖r‖2 ≤ Pmax.
Therein, rmax, wmax, smax, Pmax > 0.

4. METHODS

A piecewise constant discretization for the control u(t)
is applied. Then, (1) can be solved exactly using complex
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rotation matrices (Cayley-Klein formalism, see Pauly et al.
(1991)). For fixed T the control constraints (5) are treated
with semismooth Newton techniques using the reformula-
tion of the first-order necessary conditions based on Robin-
son’s normal map, see Pieper (2015). Here, we introduce
a combined semismooth Newton / quasi-Newton method,
were the smooth part of the second derivative is replaced
by a BFGS approximation, which avoids tangent/adjoint-
for-Hessian solves. The state constraints are treated with
penalty methods. Adjoint based exact discrete derivati-
ves are formed for the first derivatives. The Newton-type
method is embedded into a trust-region framework using
Steihaug-cg, see Steihaug (1983). The method is extended
to time-optimal control by using a bilevel method, where
the free terminal time is reduced in an outer loop. Here,
a heuristics for global optimization is applied to exclude
noncompetitive local optimizers. The methods are pro-
grammed in Matlab, the core is parallelized in C using
OpenMP.

5. NUMERICAL EXPERIMENTS

The optimization method is tested on a set of realis-
tic examples from Grissom et al. (2016) with different
number/thickness/position of the slices, and for different
constraint values. A fine resolution in space and time
is needed (up to 20000 points each) especially for thin
slices. For measurements the temporal resolution is given
by the minimum gradient raster time of the MR scanner
device (10µs). The optimization runs are initialized with
an existing (non-iterative) method of RF pulse design for
simultaneous multislice acquisition.
In the time-fixed setting, the power of the RF pulse is
reduced by approximately 50% compared to the initial
pulse. In the time-optimal case, the pulse duration T can
be reduced by 70 − 90% depending on the example. Two
typical time-optimal controls are depicted in Figure 1.
As can be seen, both u and ġ are bang-bang solutions
everywhere but at around the two peaks of w. Here, other
inequality constraints are active that prevent a further
time reduction. In examples with tighter SAR or profile
constraints, the percentage of bang-bang arcs is decreased
significantly. The optimized RF pulses are implemented on
a 3T MR scanner and the measurements are compared to
the simulations.

6. CONCLUSION

A tailored design of RF pulses for clinical applications is
important for future directions in MRI. With the presented
approach extremly short RF pulses can be generated
that allow to speed up MR acquisitions significantly.
In a separate work the time-optimal RF pulses were
incorporated in a clinical MRI sequence resulting in a
fast high-resolution full-head coverage (in 70s), see Aigner
et al. (2017). The extension to parallel-transmit MRI will
be investigated in the future.
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1. INTRODUCTION

Most processes in industry as well as in nature can be
rarely described with one simple model. Therefore vari-
ous modelling methods established in the last years deal
with implementations of complex structures. Two of this
methods are topic of this contribution. Due to increasing
availability of data from multiple resources research in the
field of neural networks increased exponentially. Neural
networks are used to imitate the human brain and enable
algorithms to make their own decisions. Also in the indus-
trial sector the importance of data increases. Therefore
the research field big data is also important in current
industrial research projects. Urban infrastructure is one
example: Cars driving on their own, gathering information
while driving to make decisions on human behalf. But
it would be careless to use only data-based models for
simulation of complex processes involving heavy machines.
Therefore first principle models are still important and the
base of modelling and simulation. In this contribution, a
comparison of these controversial approaches is discussed.

2. HYBRID DYNAMIC SYSTEMS

The term hybrid is often mentioned in connection with
the auto mobile industry. Apart from that there are many
different areas where hybrid is used and in all these cases
the wording stands for a combination of different methods
or approaches respectively. In terms of mathematical mod-
elling hybrid defines a combination of multiple modelling
approaches in one model. This contribution focuses on
hybrid dynamic models which consist of different discrete
submodels as well as continuous structures to implement
real life scenarios. Switching from one submodel to an-
other, state variables or even underlying mathematical de-
scriptions change at discrete points in time, called events.
In order to describe such hybrid systems different for-
malisms were introduced over the last decade. The usage
of automaton, as in Körner (2016) is very common because
it gives important information about the model structure.
A rough description of the submodels as well as the jump
conditions for switching can be included. This formalism
focuses on the mathematical modelling and the corre-
sponding mathematical definitions. A common alternative

and more simulation driven formalism would be DEVS&
DESS. This formalism was first introduced by Ziegler et al.
(2000) and was implemented in MATLAB by Deactu et. al
(2012). This formalism started with Discrete Event System
Specification (DEVS) and was later extended to include
dynamic processes (DESS). Furthermore linear affine sys-
tems are a widely used method to overcome challenges of
hybrid system simulation as well. Especially in the field of
control this approach is used to implement hybrid system
structures, as described in Potočnik et al. (2010).

3. NEURAL NETWORKS

Artificial neural networks are nowadays a commonly used
method, especially in the field of computer learning. In
general neural networks are based on the biological nerve
structure of human brains. The artificial neural network
imitates the reaction chain of a human neural network.
The basic structure consists of three layers: the input, the
hidden and the output layer. As the names suggest the first
and the latter function as input and output nodes. The
most interesting one is the hidden layer which contains a
specific activation function to process the incoming signal.
All three layers are connected by a pattern of edges. Each
of these edges carries a certain weight which amplifies or
damps the incoming signal before sending it to the next
node. In general a neural network gets an input and trans-
forms it according to the weights and activation function
until the final output is generated. The remaining question
is how to determine these weights and activation functions.
In literature one can find different possible definitions from
step and linear functions via logistic functions through
to sigmoid functions as activation function. This decision
depends on the application field of the artificial neural
network. The weights of the edges can only be specified
using training data consisting of input and correspond-
ing output data. There are different training options for
neural networks but a very common method is the back
propagation. This means that the available data sets are
partly used to tune the weights until the error of the neural
network output to the data set output is small enough.
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ḧ = −g
h(0) = h0
ḣ(0) = v0 .

(1)

Fig. 1. The equations and graph of a bouncing ball is given.

4. CASE STUDY: BOUNCING BALL

4.1 Model Description

In the following the bouncing ball, an academic example of
hybrid systems, is discussed. Considering a bouncing ball,
the question might be which part of this process defines
it as hybrid. As mentioned in section 2 hybrid models
combine continuous and discrete processes. Regarding the
bouncing ball the bounce itself represents the discrete part
of the model. The bounce only occurs for a single point
in time where two things happen: the ball changes its
direction and additionally, to take note of the underlying
physical damping process, decreases its total velocity. This
process can be described mathematically with height h
and velocity v. The relation of height and velocity is
of course v = ḣ and for the acceleration the relation
a = v̇ = ḧ is valid. To realise the discrete event of the
bounce the acceleration has to face opposite direction of
gravity. Therefore the model behaviour can be given as an
ODE of second order with initial conditions as shown in
equation (1).

4.2 Modelling and Simulation

Equation (1) can be transformed into an ODE system
applying basic transformations and therefore also be for-
mulated as state space description. As mentioned in the
model description the discrete event is defined as the
moment when the ball touches the ground. If the following
condition, further called jump condition, is fulfilled{

(h(t), ḣ(t)) : h(t) = 0 ∧ ḣ(t) = v(t) ≤ 0
}

the event is located and the ball’s direction changes as
defined in (2). The hybrid model description then consists
of the state space description, the jump (2) and the jump
condition.

J(v(te)) = −λv(te), λ ∈ (0, 1) (2)

In terms of neural networks hybrid is also a known term
and describes a mixture of first principle models and neural
networks, as seen in Psichogios et. al (1992). Due to the
fact that the bounding ball can be solved analytically, as
shown below, training data for the neural network can be
generated. Changing the initial condition constants c1 and
c2 varies and multiple data sets can be created.(

x1
x2

)
=

(
− g

2 t
2 + c2t+ c1
−gt+ c2

)

Fig. 2. Different possibilities to apply neural networks for
hybrid systems.

5. DISCUSSION

Which data should be used for the input and output
set? Are the initial conditions as input sufficient or is it
necessary to include the time line as well. Is one hidden
layer enough and which certain structure should be used.
How many neural networks are necessary to simulate the
bouncing ball. Is one neural network with several hidden
layers sufficient, as in Fig. 2(a) or is it necessary to es-
tablish a different neural networks each simulating one
flying phase of the ball, as seen in Fig. 2(b). The latter
could be seen as a hybrid model using neural networks
as submodels. Another possibility would be to use the
mentioned approach of hybrid neural networks. The in-
tuitive implementation takes initial values and timeline in
consideration using a fully connected neural network. This
of course might not be the best choice.

6. OUTLOOK

This contribution discusses the usage of neuronal networks
for simulating hybrid systems in the field of engineering.
The chosen case study, the bouncing ball, provides all
necessary data to implement and train a neural network.
Implementing the different possible structures of neural
networks and compare them with common Simulink c©

and MATLAB c© realisations determines if neural networks
are useful for simulating hybrid systems. In most cases,
the actual hybrid model can not be given in detail,
then the gained experiences of this comparison may be
applied. Another improvement of performance might be
the possibility to use hybrid neural network. Therefore
a more detailed analysis of these different approaches is
necessary.
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1. INTRODUCTION

Thermal ablation treatments in cancer therapy heat a tar-
get volume, enough to cause it to burn, but leave healthy
tissue and neighboring sensitive structures undamaged; see
Chu and Dupuy (2014). The placement of the heat source
and the control of its power are essential for an effective
ablation, and are affected by the size and location of the
target. In the following, we propose a novel approach to the
power-placement problem by dissecting it into two parts.

In the first part we determine the optimal heat source
by solving a distributed elliptic optimal control problem,
which is parametrized with respect to problem relevant
parameters. Using the certified reduced basis method for
parametrized distributed elliptic optimal control problems
presented in Kärcher et al. (2017), a reliable and real-time
efficient surrogate model is created.

The second part determines a reproduction of the optimal
heat from the first part using heat sources produced by
ablation devices. This is achieved by the optimization of
the power settings and placement parameters of one or
multiple heat sources. A greedy multiple heat source place-
ment algorithm is introduced, so that multiple heat sources
can be positioned in order to improve the approximation
of the target function.

2. PART I: OPTIMAL HEAT DISTRIBUTION

2.1 Transfer of Heat in Living Tissue

The Pennes bioheat equation in Pennes (1948) describes
the heat transfer in living tissue and approximates the
cooling effect of blood circulation as an isotropic heat
sink, proportional to the blood flow rate and the difference

? This work is supported by the European Commission through the
Marie Sklodowska-Curie Actions (European Industrial Doctorate,
Project Nr. 642445).

between the body core temperature and the local tis-
sue temperature. The non–dimensional stationary bioheat
equation is

−k∆y + cy = u, in Ω

k∇νy + hy = 0 on Γ
(1)

where y and u ∈ U = L2(Ω) are the temperature and
heat functions, k is the thermal conductivity, c is the blood
perfusion parameter and h is the convection parameter.

The corresponding weak formulation is∫
Ω

k∇y∇φ+

∫
Ω

cyφ+

∫
Γ

hyφ =

∫
Ω

uφ

⇔ a(y, φ;µ) = b(u, φ;µ)

(2)

for all φ ∈ Y = H1(Ω), where a(·, ·;µ) : Y × Y →
R is continuous and coercive, b(·, ·;µ) : U × Y → R
is continuous, and µ ∈ D represents the parameters
of interest. Here, µ may include tissue parameters or
geometric parameters such as the proximity of the tumor
to risk structures as in Tokoutsi et al. (2017).

2.2 The Distributed Optimal Heat Problem

The optimal heat is the solution of a distributed optimal
control problem, constrained by the bioheat equation (1).
The computational domain is divided into target Ω1, risk
Ω2 and healthy Ω3 tissue. The target temperature is set to
be 0.18 over the target Ω1 and 0 elsewhere. Each term in
the cost functional is weighted according to its significance.
The optimal heat can be parametrized with respect to the
problem parameters, and the weights of the summands of
the corresponding cost functional.

The optimal heat u∗ is determined as the solution to

min
u∈U

J(y, u) : =

3∑
i=1

λi
2
‖y − yd‖2L2(Ωi)

+
λ

2
‖u‖2L2(Ω)

= d(y − yd, y − yd;µ) + λ c(u, u;µ)/2

s.t. a(y, v;µ) = b(u, v;µ) ∀v ∈ Y = H1(Ω)

(3)
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Using the Lagrangian formulation and calculating the
first order optimality conditions of the resulting opti-
mization problem, a system of equations is obtained; see
e.g. Tröltzsch (2005). Given µ ∈ D the optimal solution
(y∗, u∗, p∗) ∈ Y × U × Y satisfies

a(y∗, φ;µ) = b(u∗, φ;µ) ∀φ ∈ Y,
a(ϕ, p∗;µ) = d(yd(µ)− y∗, ϕ;µ) ∀ϕ ∈ Y,
λc(u∗, ψ;µ)− b(ψ, p∗;µ) = 0 ∀ψ ∈ U.

(4)

Here p∗ is the adjoint function and the equations (4)
correspond to the vanishing directional derivatives of the
Lagrangian of (3), and are called the state, adjoint and
gradient equations.

3. REDUCED BASIS APPROXIMATION

The efficient and reliable online solution of PART I is
achieved by employing the Reduced Basis (RB) method.
Using an adjusted version of the well established greedy
sampling algorithm, a sample set DN = {µ1, · · · , µN} ⊂
D, the associated integrated reduced basis space YN =
span{y∗(µn), p∗(µn), 1 ≤ n ≤ N}, and the reduced basis
control space UN = span{u∗(µn), 1 ≤ n ≤ N}, 1 ≤
N ≤ Nmax, are generated. The greedy algorithm utilizes
rigorous and (online-)efficient a posteriori error bounds,
which are obtained by manipulating the error residual
equations of the optimality system (4). It can be shown
that:

Proposition 1. For any µ ∈ D the optimal heat error in
the energy heat norm ‖ · ‖U(µ) satisfies

∆u,ALT
N (µ) := c1(µ) +

√
c1(µ)2 + c2(µ),

where c1(µ), c2(µ) depend on the lower bound of the
coercivity constant of a(·, ·;µ), the upper bound of the
continuity constant of b(·, ·;µ), and the upper bound CUB

D
for the constant CD(µ) := supu∈Y |u|D(µ)/‖v‖Y ≥ 0, and
the dual norms of the residuals of the equations in system
4; for details, see Kärcher et al. (2017).

4. PART II: GREEDY MULTIPLE HEAT SOURCE
PLACEMENT

4.1 Heat Source Power-Placement Optimization

The second part of our proposed method is concerned
with the optimization of the power P ∈ R and placement
χ ∈ Rm, m = 5 in 3-D, of a finite number of heat sources
using the optimal heat u∗ of the first part as target. We
assume here that the heat sources are reproducible with
state-of-the-art medical equipment. We further assume
that each heat source can be described using a sufficiently
smooth closed formulation, e.g.

Q(x, χ, P ) = P exp
(
− (x− χ)2/(2γ2)

)
, (5)

where the variance γ2 is fitted so that Q approximates
the heat source produced by a radiofrequency ablation
probe. The optimal placement χ? and power P ? of each
heat source results from solving an optimization problem,
where the target heat function U = U(x;µ) depends on
u∗(x;µ)

(χ?, P ?) = argmin
χ, P

I(χ, P ;µ) := ‖Q(χ, P )− U‖2L2(Ω) (6)

The power-placement optimization problem (6) is a low di-
mensional optimization problem which can be solved with

common optimization algorithms such as quasi-Newton or
trust region methods; see e.g. Nocedal and Wright (2006).
Due to the non-convexity of the cost functional, there exist
multiple local minima to I(χ, P ;µ).

4.2 Greedy Multiple Heat Source Placement Algorithm

The placement of multiple heat sources can be achieved
iteratively until the collective heat source Q? adequately
approximates the optimal heat u∗. The proposed greedy
multiple heat source placement algorithm will locate the
most significant local minima of I(χ, P ;µ).

Algorithm 1. (Multiple Heat Source Placement). The al-
gorithm is initialized with U = u∗ of PART I as target
function. On each iteration (k), the termination criteria
are checked, the target heat source is updated to U = U −
Q(µ(k−1),?) and P (k),?, χ(k),? are determined by solving
(6).

The termination criteria consist of the achievement of
a prescribed tolerance for the relative heat error norm
or for the change in the value of the cost function. A
further relevant criterion refers to exceeding a prescribed
maximum number of heat sources.

5. SUMMARY

This work presents an algorithm for multiple heat source
placement, motivated by thermal ablation treatments, and
our steps toward real-time efficiency using the reduced
basis method. Numerical results are presented to show the
performance of the proposed approach.
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1. INTRODUCTION AND STATE OF THE ART

This contribution deals with the development of a system
based modelling approach for anatomic joints. Modelling
and simulation in the field of biomechanics is a very
important method to analyse the dynamic behaviour of
the human body. Understanding the influence of the in-
dividual parts of the musculoskeletal system is necessary
for the analysis and treatment of diseases. Furthermore,
mathematical models of parts of the human body are
indispensable in the development of prostheses.
The engineering progress in the last decades in the field of
prostheses lead to an enormous enhancement of life quality
for disabled people. Nowadays, wearing a prosthesis does
not restrict daily life and normal habits so much. Modern
leg prostheses adapt to the gait cycle by changing the
damping of the knee as humans do it automatically. This
technology reduces the risk of falling and extends activities
with prostheses as doing sports and walking on uneven
ground. Sensoring the knee angle and ground contact of
the heel gives the possibility to control the change of the
swung into the stance phase and vice versa via a micro-
processor in the prosthesis. For example this technology is
used in prostheses developed by OttoBock R© (2011), a well
known manufacturer of healthcare systems.
Among several methods exist to model a biomechanical
system, two approaches to describe these systems are most
common:

• Partial differential equations
• Multibody modelling.

Modelling a biomechanical system with partial differential
equations is used to compute the strains and stresses in the
components during small movements. Multibody models
are used to describe the kinematics of the underlying
system under gross movements. These two approaches
describe the biomechanical system on a microscopic and
macroscopic level, respectively. In order to formulate a
PDE model a detailed knowledge about the system is
required which is not every time available.
The main part of this contribution is the integration of a
biomechanical system in a system simulation loop circuit
and not the formulation of an additional biomechanical
model for a human joint. This gives the opportunity to
improve the technology used in prostheses and the research
in the field of biomechanics of human joints.

Fig. 1. The anatomy of a human knee joint in Schabus and
Bosina (2007).

2. MULTIBODY MODELS

Multibody models give the possibility to describe a biome-
chanical system without having all information about the
interactions in the system. The possibility to build a multi-
body model in an acausal way does not require the math-
ematical formulation of the system from the first instance
on. This does not only allow a fast way of modelling but an
analysis of the system. Multibody models thus emphasize
the most important elements in a system and their mu-
tual interactions. Hence, multibody models are a powerful
tool to model and simulate the kinematics of body parts
because it focuses on the mechanical description. A muti-
body model contains bodies respresenting flexible or rigid
human body parts and links connecting multiple bodies
with different types of movements and degrees of freedom.
The equations of motion of a multibody model are derived
by the Newton-Euler equations and the Lagrange formal-
ism. The motion of rigid bodies can therefore be described
by

Mq̈ + JT
q λ = F. (1)

Here M describes the mass matrix of the system, the
vector q denotes the system coordinates which contain the
translational and rotational movements, the matrix Jq is
the Jacobian matrix of the system coordinates, λ repre-
sents the Lagrange multipliers and the vector F implies
the external forces. The derivation and use of this formula
is explained more detailed in Quental et al. (2012).
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Fig. 2. Simple multibody model of a human knee joint in
Simscape.

This description of the dynamics in a human body part
by ordinary differential equations allows to consider the
biomechanical system as a dynamic system which be-
haviour changes in time t depending on acting inputs u,
disturbances and initial values p, where the output y can
be described with an ordinary differential equation f :

ẏ(t) = f(t, u(t), y(t), p). (2)

3. CASE STUDY - THE HUMAN KNEE JOINT

For the first case study we choose the human knee joint
to implement as multibody system. The human knee joint
is the most complex joint in the human body due to the
complexity of the interactions of three bones and multiple
ligaments and tendons. The anatomic structure of the
human knee is shown in figure 1 with the three bones,
the patella, the femur and the tibia as well as the main
ligaments, the cruciate and the collateral ligaments.
First we implement a simplified knee model only with the
two main bones connected by a revolute joint. The bones
are implemented as rigid bodies. The multibody model of
this system is developed in Simscape with the multibody
model library which can be seen in figure 2.

4. INTEGRATION OF A JOINT MODEL IN A
SYSTEM SIMULATION LOOP

As mentioned before the focus of this work is the inte-
gration of biomechanical models in a system simulation
loop circuit. This closed feedback loop system will be
designed in the first attempt for the multibody model but
future work will include biomechanical models described
by partial differential equations as well and later perhaps
additional modelling approaches. This required flexibility
of the loop can be seen in figure 3.
To design a closed loop it is necessary to define the input
u and the output y of the model in order to create a closed
feedback system. In the case of the knee the input would
be an acting force on the bone, e.g. the quadriceps muscle
which is activating the femur and via the knee joint the
tibia as well. Alternatively, modelling a prosthesis for the
whole lower limb, the leading microprocessor exerts the
force. In this respect, the output y can be the angle of the
knee joint in the simplest case to analyse in which phase
of the gait cycle the leg is. The controller which reacts
depending on the output of the biomechanical model of
the knee, defines the acting force on the knee joint for the
next time step. This design of a closed feedback simulation
loop gives the opportunity to simulate a human gait. For
the first approach it will be a walk on even ground but it is
possible to design a more complex controller able to adapt
not only to the ground but also to the walking speed.

Fig. 3. Design of a feedback loop for different biomechan-
ical models.

To ensure a stable control design specifications for the
used model must be made. This will include restrictions
for the in- and the output. This work will specialise on
models which compute under certain forces the resulting
strains in the human knee. This restriction makes sure
that the designed controller works for different types of
biomechanical models.
In order to design a well defined closed system simulation
loop circuit, the system has to depend on time. This means
the output of the biomechanical system changes their
behaviour not only dependent on the input and parameters
but also additionally on time.

5. OUTLOOK

Further work will focus on the specification of the biome-
chanical model, e.g. ligaments and muscles will be included
to analyse a more complex system behaviour, related to
Bersini et al. (2016). Moreover, the controller designed
for the multibody model will be evaluated for different
biomechanical models such as thus based on PDEs. The
focus will lay on the examination of the performance and
efficiency of the feedback simulation loop depending on
different models and their complexity. The aim of this work
is to investigate the requirements of biomechanical models
for different applications which should help to validate
them depending on their applications.
After evaluating the closed loop simulation circle designed
for the knee joint, different joint models, as for example a
shoulder joint, will be examined.
The results of the established work will be beneficial for
the future design of biomechanical models and finally in
the development of prosthetical products.
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1. INTRODUCTION

The investigation of very complex dynamical systems like
metabolism of an organism requires the comprehension
of important subsystems. Here, we investigate metabolic
resistances and in particular the link between the geometry
of the metabolic network to the impact of environmental
changes in the selection of resistant bio types.

2. SUPPLY CHAINS UNDER ENVIRONMENTAL
INFLUENCES

We introduce a supply chain consisting of different com-
partments A,B, .. whereas each of them can later be in-
terpreted as gen loci in an organism. Each chain posses
an inflow in form of jin into the first compartment and
an outflow jout off the last. Between each compartment
is an connection flow j. All flows are measured against
a reference point. Furthermore, we introduce an outer
influence k(z) which connects to j and is dependent on
a toxic xenophobic substance z. The factor z inhibits k,
i.e an increase in z results in a decrease of k(z).
In addition, we need more monotony behaviors for the
system. We demand that jin is monotonically decreasing
in A and also jout monotonically increasing in B, i.e

k ↘ j ↘ jin ↘ A↗ and k ↘ j ↘ jout ↘ B ↘ .

Therefor, we obtain for two compartments the system

Ȧ = jin(A)− j(A,B) (1)

Ḃ = j(A,B) + jout(B)

with the inflow jin(A) = kin(1−A) the outflow jout(B) =
koutB and the connecting flow j(A,B) = k(z)(A − B),
whereas kin and kout are reaction constants.
By scaling kout and kin to 1 we get from (1)

Ȧ = (1−A)− k(z)(A−B)

Ḃ = k(z)(A−B) +B.

The desired biological effect is that an increase of z leads
to an decrease in j and finally in an decreased jout.

The faster time behavior of a metabolic chain grants us
a quick adaptation and therefore in the stationary case
jin = jout = j. It is important to remark that this case
happens almost immediately in comparison to the heritage
and growth of an organism.
By looking at the stationary case and solving it we yield

A∗ = 1− k(z)

1 + 2k(z)
⇒ j∗out =

1

2 + k(z)−1
. (2)

Hence, an increase of the toxic substance z, i.e decrease of
k, leads to an decrease of the flow between the compart-
ments.

2.1 Different geometries

After getting insight about the basic behavior of a
metabolic supply chain we take the next step by analyzing
two different forms of connections between the compart-
ments: The ’AND’ and ’OR’ connections.

Fig. 1. Illustration of an
AND connection

Fig. 2. Illustration of an
OR connection

The AND connection is characterized by the continuous
sequence of compartments and connecting flows ji

Ȧ = jin(A)− j1(A,B)

Ḃ = j1(A,B) + j2(B,C)

Ċ = j2(B,C)− jout(B)

whereas the OR connection has two possible connection
between the compartments to simulate the fallback solu-
tion of an organism in times of shortage

Ȧ = jin(A)− j1(A,B)− j2(A,B)

Ḃ = j1(A,B) + j2(A,B)− jout(B).

Solving again the equations in the stationary case leads
similar to (2) to the outflows

j∗AND =
1

2 + k−1
1 + k−1

2

j∗OR =
1

2 + (k1 + k2)−1
. (3)

As a remark we see that the nature of (3) reminds us of
electric circlets, to be more precise: resistances in sequence
and parallel connection.

3. PROSPERITY OF AN ORGANISM

Next we model the prosperity of a population by the time
repented variable w(t). Each organism in the population
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earns an amount jout by the metabolism and has a basic
level of consumption b. So we denote (jout − b) for the
reproduction and growth of each organism. Under the
assumption of an exponential growth with parameter γ
we obtain

ẇ = γ(jout − b)w. (4)

The question is now which mortality s belongs to the
growth (4) and this can be solved by comparison to ideal
situation ẇid = γ(jout− b)wid =: f(wid). Hence, this leads
to

ẇ = f(w)− sw
and translates to

γ(jout − b)w = γ(jmax − b)w − sw (5)

which describes ideal growth minus the mortality of a
population. By solving (5) for s we obtain

s = γ(jmax − jout)
which is independent of the wealth w of a population.
Therefore we can interpret a lack of a metabolic product
jout as an increase of mortality s for the population.

4. CONNECTION OF METABOLIC OUTPUT TO
RESISTANCES

In analogy with Langemann (2013) we model a population
of biotypes with growth, mortality, and inheritance in a
closed domain. The occurrence of the biotypes with index
i in a certain domain is quantified by its population size ci
depending on the time t. Each biotype i is characterized by
its growth rate wi > 0, a mortality rate s > 0 depending
of a xenophobic substance z. In general, the biotype spe-
cific resistances are unknown and so s(z) were a heuristic
approach to the resistance development by Langemann
(2013). By using our accumulated results of metabolic
chains and their geometry can know give a reason for dif-
ferent resistant behaviors during environmental changes.
For better understanding, we will discuss two scenarios for
the population dynamic.
Case A is underlined by an AND connection between the
gen loci whereas Case B has an OR connection. We denote
that xixi is resistant ,xiXi is medium resistant andXiXi is
prone to a toxic treatment with kres = 1, kmed = 1

4 , kpr =
1
9 and i ∈ {1, 2}. We use the same parameters for both
cases and see at Table 2., im comparison to Table 1. that
the combination of a resistant and a susceptible link results
in agreatly decreased mortality rate for the OR connection.
We interpret this effect as an alternate solution of an
organism to deal with the shortage of a product. As last

Table 1. Mortality rates for an AND connec-
tion

s X2X2 X2x2 x2x2

X1X1 0.2 0.18 0.17
X1x1 0.18 0.15 0.09
x1x1 0.17 0.09 0

Table 2. Mortality rates for an OR connection

s X2X2 X2x2 x2x2

X1X1 0.25 0.19 0.05
X1x1 0.19 0.15 0.04
x1x1 0.05 0.04 0

we compute the behavior of the biotypes with different

0 50 100time t
0

0.4

0.8

c
i

AND connection for 9 biotypes

Fig. 3. Only the 3 resistant population gain an advantage
after the treatment

0 50 100time t
0

0.4

0.8

c
i

OR connection for 9 biotypes

Fig. 4. Better outcome for the medium resistant biotypes
after the treatment

mortality rates given by the Tables 1. and 2. As an visual
indicator we color the more resistant biotypes in a stronger
gray.

As result we remark that biotypes with an OR connection
survive better in a changing environment which we can see
at Figure 4. ,i.e the middle gray biotypes become larger
after the treatment in comparison to a AND biotype with
same values.

5. CONCLUSION

Through the usage of metabolic chains we were able to give
a mathematical reason for different resistances of certain
biotypes under environmental changes. A organism with
multiple ways to circumvent a shortage of nutrition can
fallback to other sources and therefore handles treatments
better than organism with single connections in their
metabolism.
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1. INTRODUCTION

Proper Orthogonal Decomposition (POD) is a widely used
technique for constructing low-order approximation spaces
from high-dimensional input data. Apart from numerous
applications in the data sciences, POD is also a funda-
mental tool for the basis generation in projection-based
reduced order modelling methods. In these methods, POD
is used to construct low-dimensional state spaces that
capture with high accuracy the relevant dynamics of a
given high-dimensional discrete model. A quickly com-
putable low-dimensional surrogate model is then obtained
by projection of the governing equations of the original
model onto the POD approximation space.

The POD space is obtained from a given set of ‘snapshot’
vectors S by writing the elements of S as a matrix of
column-vectors, of which a truncated singular value de-
composition (SVD) is computed. The left-singular values
of this decomposition then form a basis (POD modes) of
desired POD space (cf. Sirovich (1987)).

For large-scale applications with an increasing amount of
input data vectors, however, computing the POD quickly
becomes prohibitively expensive, in particular when the
generated data is so large that the snapshot set S cannot
be stored entirely in memory.

In this contribution we introduce a generic, easy to im-
plement approach to compute an approximate POD based
on arbitrary tree hierarchies of worker nodes, where each
worker computes a POD of only a small amount of snap-
shot vectors s ∈ S. The tree hierarchy can be freely
adapted to optimally suit the available computational re-
sources. In particular, this hierarchical approximate POD
(HAPOD) allows for both, simple parallelization with
low communication overhead, as well as live sequential
POD computation under restricted memory capacities. We
present rigorous error estimates and numerical examples
which underline the performance and reliability of our
approach.
? Supported by the Deutsche Forschungsgemeinschaft, DFG EXC
1003 Cells in Motion – Cluster of Excellence, Münster, Germany, by
the Center for Developing Mathematics in Interaction, DEMAIN,
Münster, Germany, by Cells in Motion (CiM) Cluster of Excellence
in flexible funds project FF-2015-07, and by the German Federal
Ministry of Education and Research (BMBF) under contract number
05M13PMA.

ρ

α1

β1 β2 β3

α2

β5 β6

Fig. 1. Tree structure for HAPOD computation with leaf
(input) nodes βi, intermediate nodes αi and root
(output) node ρ.

2. HIERARCHICAL PROPER ORTHOGONAL
DECOMPOSITION

The HAPOD algorithm is based on an abstract tree struc-
ture (cf. Fig 1) where each node of the tree corresponds to
a worker node performing computations on only a small
set of snapshot/POD data. The HAPOD computation
consists of the following steps:

(1) Distribute snapshot vectors s ∈ S among workers at
leaf nodes βi.

(2) At each node:
(a) compute POD of input vectors for given local

error tolerance.
(b) scale POD modes by corresponding singular val-

ues.
(c) communicate scaled POD modes to parent node.

(3) Return the POD modes at root node ρ as output.

Note that communication is only performed upwards in
the worker hierarchy from child to parent nodes. Local
PODs can be computed in parallel and asynchronously
as soon as all required input data is available. These
properties make the HAPOD ideally suited for complex
heterogeneous compute architectures and cloud comput-
ing, where frequent, synchronous communication of high-
dimensional data is not an option. The HAPOD can be
combined with any available algorithm for the local POD
computation, possibly taking advantage of (parallelized)
high-performance implementations specifically adapted to
the given problem and computing environment.
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2.1 Theoretical Analysis

POD is optimal in the sense that the POD space spanned
by the first N modes minimizes the mean square approxi-
mation error ∑

s∈S
‖s− PVN s‖, (1)

where PVN is the orthogonal projection onto a given N -
dimensional subspace VN . In Himpe, Leibner, and Rave
(2016) we show that for any given tree structure and snap-
shot set S, we can define local truncation error tolerances
for the mean error (1) such that for the resulting HAPOD
space Vρ the bound

1

|S|
∑
s∈S
‖s− PVρ(s)‖2 ≤ ε∗2 (2)

holds for any prescribed target error ε∗. Moreover, the
number of resulting HAPOD modes is bounded by∣∣∣HAPOD[S, εT ](ρ)

∣∣∣ ≤ ∣∣∣POD(S, ω · ε∗)
∣∣∣, (3)

where |POD(S, ω·ε∗)| denotes number of modes for a POD
of S with a target error of ω · ε∗ with arbitrary ω ∈ [0, 1].
At the same time, the number of HAPOD modes at the
intermediate nodes α is bounded by∣∣∣HAPOD[S, εT ](α)

∣∣∣
≤
∣∣∣POD(S̃α, (L− 1)−1/2 ·

√
1− ω2 · ε∗)

∣∣∣, (4)

with L being the depth of the considered tree and S̃α the
set of snapshot vectors assigned to the leaves below α.

Thus, while guaranteeing a prescribed approximation error
ε∗, the parameter ω allows us to control the trade off
between an optimal approximation space of minimal di-
mension (ω = 1) and reduction of computational effort,
i.e. smaller intermediate PODs (ω = 0).

2.2 Numerical Evaluation

In Fig 2 we show timing results for HAPOD and POD
computation on 2D solution trajectories of a P15 moment
closure/finite volume approximation of the Boltzmann
equation for neutron transport, considering the checker-
board test case from Brunner and Holloway (2005). The
trajectories were computed on uniform k × k-grids with
linearly increasing numbers of timesteps for 125 choices of
scattering and absorption coefficients, yielding for k = 200
about 2.5 terabytes of snapshot data.

The trajectories were computed in parallel on eleven
compute nodes of a distributed memory computer cluster 1

utilizing one processor core for each trajectory.

In all cases the computation time for the trajectories
was negligible in comparison to the required time for the
POD/HAPOD computation. Already for k ≥ 60, the POD
could no longer be computed due to memory limitations.
In addition, the HAPOD was twice as fast for k = 200 as
a standard POD for k = 40, even though the amount of
data that needed to be processed increased by a factor of
125.

1 Each node encloses two Intel Xeon Westmere X5650 CPUs (2 × 6
cores) and 48GB RAM.
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Fig. 2. Computational wall time for POD and HAPOD
as well as time for snapshot generation for increasing
state-space dimension and number of snapshots (ε∗ =
10−4, ω = 0.95).

For full details and further numerical experiments we
refer to Himpe, Leibner, and Rave (2016). A reference
implementation of the HAPOD algorithm can be found
under https://git.io/hapod.
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1. INTRODUCTION

The simulation of the eddy currents in electrical devices with
the finite element method (FEM) is satisfactory. However, the
large systems to be solved result in high computational costs,
i.e. memory requirement and computation time. Although the
multiscale finite element method (MSFEM) can be exploited to
simulate eddy currents in laminated iron more efficiently the
complexity of the problems are still too large to solve them
conveniently. The computational costs are a multiple of the
costs of anisotropic models in brute force methods according
to the components used in the multiscale formulation, compare
with Hollaus and Schöberl (2017).
Model order reduction (MOR) has proven to be a powerful
methodology to reduce the costs and is well established for
linear problems. MOR with proper orthogonal decomposition
(POD) has been applied to solve large scale linear problems in
computational electromagnetics very successful. Strategies to
select an optimal number of snapshots except those with the
largest singular values can be found in Sato and Igarashi (2013)
and Klis et al. (2016). Those MOR methods are interesting
which exploit properties of specific problems. Splitting of the
domain into a region where the solution changes strongly due
to a parameter variation and the rest, MOR is applied to the
rest with almost constant solution in Sato et al. (2016). For
example, the speedup factor is about 1.6 for quasitatic problems
in 2D by MOR with POD applied only to the linear domain
in Schmidthäusler et al. (2014). MOR is frequently used to
facilitate the simulation of electrical machines, see for example
[Farzamfar et al. (2017)].
In the present work, the idea is to exploit the specific structure
of systems coming from the MSFEM for the eddy current prob-
lem (ECP) in laminated media for MOR. For example, the en-
tire problem region can be subdivided into air and the laminated
media on the one hand and, on the other, the total solution is
composed of a large scale and fine scale part. This work focuses
on the second aspect which will be called structural model order
reduction (SMOR), see also Klis et al. (2016).
The aim is to study the feasibility to exploit the structure of
specific systems arising out of MSFEM of ECPs with laminated
media for MOR. Much more accurate results are expected by
MSFEM with MOR than by FEM with MOR with the same
effort.
First, the basic ECP studied in the present work uses a single
component current vector potential (SCCVP) T and is dis-
? This work was supported by the Austrian Science Fund (FWF) under Project
P 27028-N15.

Fig. 1. Eddy current problem in 2D.

cussed in Sec. 2. Then, MSFEM for T is introduced. Next,
MOR and structural model order reduction (SMOR) are ex-
plained briefly in Sec. 3. A comparison of numerical results
obtained by MOR and SMOR are presented in Sec. 4.

2. HIGHER ORDER MSFEM WITH THE SINGLE
COMPONENT CURRENT VECTOR POTENTIAL T

2.1 Boundary value problem with T

A current vector potential T can be introduced by J = curl T
fulfilling div J = 0 exactly. This work deals with the sin-
gle component current vector potential T , e.g., pointing in z-
direction T = Tez in the frequency domain. A simple boundary
value problem (BVP) of the ECP in the frequency domain
reads, see Fig. 1:

curl
1
σ

curl T + jµωT = 0 in Ω ⊂ R2 (1)

T = T0 on Γ (2)

2.2 Weak form with T

The weak form for the FEM in the frequency domain reads:
Find Th ∈ Vh,T0 := {Th ∈ Uh : Th = T0 on Γ}, such that∫

Ω

1
σ

curl Th · curl th dΩ + jω
∫

Ω

µThth dΩ = 0 (3)

for all th ∈ Vh,0, whereUh ⊂ H1(Ω).

2.3 Higher order multiscale finite element method with T

The multiscale approach up to the order 4 for the single com-
ponent current vector potential
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T̃ (x, y) = T0(x, y) + φ2(x)T2(x, y) + φ4(x)T4(x, y) (4)
is considered with even micro-shape functions φ2 and φ4 shown
in Fig. 2. Simply speaking T corresponds to the magnetic
field strength H which is an even function in the lamination,
therefore the micro-shape functions φ2 and φ4 are used in (4).

Fig. 2. Even micro-shape functions φ2 and φ4.

2.4 Weak form of MSFEM with T

The weak form reads as:
Find (T0h,T2h,T4h) ∈ Vh,T0 := {(T0h,T2h,T4h) : T0h ∈ Uh,T2h
and T4h ∈ Vh,T0h = T0 on Γ and T2h = 0 and T4h =
0 on Γm0,1 ⊂ Γm0}, such that∫

Ω

1
σ

curl T̃h · curl t̃h dΩ + jω
∫

Ω

µT̃h t̃h dΩ = 0 (5)

for all (t0h, t2h, t4h) ∈ Vh,0, where Uh is a subspace of H1(Ω),
Vh of H1(Ωm) and φ2 and φ4 ∈ H1

per(Ωm).

3. MOR AND SMOR

Assume that the MSFEM (5) results in the linear equation
system

Ax = f . (6)
Furthermore, m snapshots xi, i.e. solutions of Aixi = f by
modifying a parameter are calculated and inserted as column
vectors in the snapshot matrix S with dimension n × m, where
usually n � m holds. The present work uses the relative
permittivity µr as parameter. Next, for the POD based MOR
a singular value decomposition (SVD)

S = UΣV∗, (7)
the star marks conjugate transpose of V , is carried out. Matrices
U (n × n) and V (m × m) are Hermitian matrices. The singular
valuesσi are arranged in the diagonal of Σ withσi ≥ σi+1. Now,
an appropriate reduced basis

W = [u1σ1, u2σ2, ..., urσr], (8)
matrix W represents the projection matrix, is selected consider-
ing the essential singular values σi, where r ≥ m is valid. With
x = Wy the reduced order model

WT AWy = WT f = Ky = g (9)
is obtained. Similarly, SVDs are carried out of all partitions S i,
where S = (S 0, S 2, S 4)T , according to the unknowns T0,T2
and T4 in the approach (4). Therefore, SMOR yields a larger
reduced order model than MOR.

4. NUMERICAL RESULTS

The model shown in Fig. 1 consists of 10 laminates, d =
1.8mm, and air gaps in between, d0 = 0.2mm. The dimensions
of the domains are |Ωm| = 20×20 mm2 and |Ω| = 40×40 mm2.
The frequency f was chosen with 50Hz and the conductivity σ

Fig. 3. Comparison of model order reduction (MOR) with
structural model order reduction (SMOR).

with 2 · 106S/m.
The relative error presented in Fig. 3 is defined by comparing
the eddy current losses P obtained by MOR or SMOR with
those of MSFEM:

Relative error in % =
P(S )MOR − PMS FEM

PMS FEM
· 100 (10)

For the snapshots, µr has been selected with 125, 625, 3125,
15625 and 78125. The solutions in Fig. 3 are calculated at µr
equals 375, 1875, 9375 and 46875, i.e. m = 5. The number of
basis vectors used in the reduced basis is denoted by k. SMOR
provides already for a very small reduced basis reasonable
results. The error of MOR decreases for increasing µr clearly.
MOR and SMOR reduce the MSFEM system by factor of about
100.

5. CONCLUSION

SMOR seams to be working properly already with very few
basis vectors, i.e. low dimension of the reduced basis. An
extension of SMOR to large and nonlinear problems in 3D will
be studied in the future.

REFERENCES

Farzamfar, M., Belahcen, A., Rasilo, P., Clenet, S., and
Pierquin, A. (2017). Model order reduction of electrical ma-
chines with multiple inputs. IEEE Trans. Ind. Appl., 53(4),
3355–3360.
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1. INTRODUCTION

In rotating electrical machines, it is reasonable to assume
that each iron sheet is exposed to the same field, thus
it suffices to simulate only one sheet. In the case of
the thickness of the sheet being small compared to the
other dimensions, the three dimensional problem may
be further reduced to a two dimensional one, coupled
with a separate one dimensional problem in the direction
of the thickness, which will be assumed to be the z
axis throughout this contribution. Examples of such an
approach have been presented in Bottauscio and Chiampi
(2002) and J. Pippuri and Arkkio (2010), where the
coupling is realized via a nested iteration, and F. Henrotte
and Geuzaine (2015), where this principle was used in the
context of homogenization.

This contribution presents a novel approach to this idea
utilizing a multiscale finite element method (MSFEM, Hol-
laus and Schöberl (to be published)). The main principle
is to express the behavior of the solution along the z axis
via a polynomial ansatz which directly couples into the
two dimensional problem, thereby eliminating the need to
repeatedly solve two dependent problems. Such a method
will be developed and tested for both the A formulation
and the T formulation. All models assume a linear, time-
harmonic setting.

2. A FORMULATION

In three dimensions, the weak form of the eddy current
problem is given as: Find the magnetic vector potential
A ∈ H(curl ), satisfying suitable boundary conditions, so
that ∫

Ω

µ−1curlA · curl v + iωσA · v dΩ = 0 (1)

for all test functions v ∈ H(curl ). In (1) µ denotes the
magnetic permeability, i the imaginary unit, ω the angular
frequency and σ the electric conductivity.

For the 2D1D model the ansatz

A =

(
A1,1(x, y)φ1(z)
A1,2(x, y)φ1(z)

0

)
(2)

? This work was supported by the Austrian Science Fund (FWF)
under Project P 27028-N15.

is chosen. Here the dependency on the coordinate z,
aligned with the sheet thickness, is modeled by the linear
polynomial function φ1, which is normalized to vary be-
tween 1 and −1 along the thickness of the sheet. A1,1 and
A1,2 stand for the two components of one two dimension
unknown A1 := (A1,1, A1,2)T ∈ H(curl ). Here and in the
following the space H(curl ) in two dimensions is defined
via the two dimensional curl operator, which is given as

curlA1 :=
∂A1,2

∂x
− ∂A1,1

∂y
. (3)

To derive the 2D problem, the ansatz (2) is used in the
three dimensional relation (1) for the trial function and
the test function, which leads to∫

Ω

µ−1

−φ′1A1,2

φ′1A1,1

curlA1

 ·
−φ′1v1,2

φ′1v1,1

curlv1

+

iωσ

(
A1,1φ1

A1,2φ1

0

)
·

(
v1,1φ1

v1,2φ1

0

)
dΩ = 0.

(4)

Decomposing the iron sheet Ω in the form Ω = Ω2D ×
[−d

2 ,
d
2 ] with the sheet thickness d, in (4) the integration

over the z coordinate can be carried out, using basic
analysis for the integrals involving the known function
φ1. This results in the two dimensional problem: Find
A1 ∈ H(curl ) so that∫

Ω2D

µ−1

(
4

d
A1 · v1 +

d

3
curlA1curlv1

)
+

iωσ
d

3
A1 · v1 dΩ2D = 0

(5)

for all v1 ∈ H(curl ).

Because it is not straightforward to use physically mean-
ingful boundary conditions in this setting, the problem
is driven by first solving a corresponding magnetostatic
problem, which is then used as a right hand side for (5).

3. T FORMULATION

For the T formulation the three dimensional problem is
given as: Find the current vector potential T ∈ H(curl )
so that ∫

Ω

ρcurlT · curlv + iωµT · v dΩ = 0 (6)
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Fig. 1. The iron sheet in the numerical example. Its
dimensions are a width of 6mm, a length of 30mm
and a thickness of 0.5mm. At the center of the sheet
there is a hole of dimension 1.2mm times 3mm. The
material parameters are given as µ = 1000µ0 and
σ = 2.08× 106S/m.

for all test functions v ∈ H(curl ), with given Dirichlet
boundary conditions for T. Here ρ = σ−1 denotes the
electric resistivity.

For the 2D1D model, a similar ansatz as in the case of the
A formulation is chosen:

T =

(
T2,1(x, y)φ2(z)
T2,2(x, y)φ2(z)

0

)
(7)

Here the behavior in the direction of the thickness is
modeled using the even function φ2, which is a quadratic
polynomial in z.

Analogous to the process for the A formulation, the
ansatz (7) is plugged into (6) and the integration over
the z direction is carried out analytically, leading to the
problem: Find T2 ∈ H(curl ) so that∫

Ω2D

µ−1

(
16

3d
T2 · v2 +

8d

15
curlT2curlv2

)
+

iωσ
8d

15
T2 · v2 dΩ2D = 0.

(8)

for all v2 ∈ H(curl ). The problem is again driven using
the solution of an auxiliary problem for the right hand
side.

4. A NUMERICAL EXAMPLE

In order to test the models developed in sections 2 and 3,
a simple numerical example is carried out. The dimensions
of the problem and the used material parameters can be
taken from figure 1.

Figure 2 shows the relative error in the calculated losses.
The reference solution was calculated by solving the orig-
inal problems, (1) and (6), on a three dimensional mesh,
respectively. It can be seen that the error increases with
higher frequencies, as expected. Out of the given 2D1D
models, the one for the T formulation performs better,
because it is able to simulate the boundary effects, as can
be seen in figures 3 and 4.

5. CONCLUSION

The presented method allow for a reasonably precise
calculation of the eddy current losses for low frequencies.
An extension into a higher frequency range is possible by
including additional ansatz functions. Future work will

Fig. 2. The relative error in the calculated losses for both
formulations.

Fig. 3. Absolute value of the magnetic vector potential A
in a cross section of the sheet for the reference solution
(top) and the 2D1D model (bottom) at 100Hz.

Fig. 4. Absolute value of curlT in a cross section of the
sheet for the reference solution (top) and the 2D1D
model (bottom) at 100Hz.

include testing the applicability of these models in the
nonlinear setting. An additional extension will be the
development of a modification for theA formulation, which
is able to resolve the boundary effects.
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1. INTRODUCTION

In recent decades, simulation-driven development has 

increasingly become established as a central method in 

industry and academia. This is leveraged by computational 

advances, like the recent emergence of equation-based 

modelling languages, which offers new possibilities 

compared to block diagram modelling using imperative 

programming languages. Classically, systems are modelled in 

a single tool, which is referred to as monolithic approaches. 

With the increased complexity of systems and the need for 

linking several domains in one model, monolithic approaches 

have restrictions: Sometimes it is not possible to simulate a 

complex system in a single tool, but even if it is possible, 

very often there are more suitable tools available for different 

subsystems. Ideally, every subsystem is modelled in a tool 

that meets the particular requirements for the domain and the 

structure of the model. Thus, the need for coupling different 

tools is a pragmatic one. Co-simulation is an approach to 

enable a simulation of complex single or multi-domain 

systems that consists at least two subsystems (modelled in 

different tools) which solve coupled (algebraic) differential 

systems of equations (Gomes et al. 2017). 

An overview of co-simulation approaches and tools, research 

challenges, and research opportunities are presented, e.g. in 

the references (Trcka 2008; Atam 2017; Mathias et al. 2015; 

Gomes et al. 2017). The proposed empirical survey aims to 

merge different views of heterogeneous communities which 

are working in the field of co-simulation, on the state of the 

art, research gaps and future challenges.   

2. METHOD

As a methodological foundation of the empirical survey, the 

Delphi method will be adopted. The Delphi method is a 

forecasting technique that bases on the collection and 

compilation of expert knowledge from a panel of experts in a 

multi-stage process (Dalkey & Helmer 1963; Hsu & 

Sandford 2007). It fosters group communication which is 

intended to deal with complex problems, particularly for the 

case where there is insufficient knowledge, lack of historical 

data, or lack of agreement found within the studied field 

(Okoli & Pawlowski 2004). The Delphi method is also 

conceived to be useful particularly for solving 

interdisciplinary research problems in a heterogeneous 

environment (Stern et al. 2012). Moreover, it enables 

determining probable future scenarios.  

We aim at integrating 15-30 experts in our Delphi study, 

because despite the lack of a mandatory minimum 

requirement, for instance (Clayton 1997) states that 15-30 

participants are adequate for studies involving experts with a 

homogenous expertise background. For selecting the sample 

of participants, a Knowledge Resource Nomination 

Worksheet (KRNW) will be used as a guideline (Delbecq et 

al. 1986; Okoli & Pawlowski 2004). 

The Delphi study will form two rounds. The first round will 

comprise a mix of open-ended and closed-ended questions. 

The second round will only include closed-ended questions 

that will be formulated based on the results of the first round. 

In addition to these standard questions, an additional 

quantitative analysis of the strengths, weaknesses, 
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opportunities and threats (SWOT) of co-simulation utilizing 

the Analytic Hierarchy Process (AHP) will be conducted.  

The SWOT-AHP method was introduced by (Kurttila et al. 

2000) to increase the effectiveness of a primary SWOT 

analysis as a decision-making tool (Reinsberger et al. 2015). 

In this study, the SWOT-AHP method is utilized to enrich the 

results of the Delphi study by providing an additional and 

new perspective on the current state of co-simulation. 

3. EXPERT INTERVIEWS

The questionnaire for the first round of the Delphi study 

consisted of four parts: (i) the roots of co-simulation. This 

includes questions about different origins for co-simulation, 

concepts, wording and scientific and industrial communities. 

(ii) Theoretical questions. Included are questions regarding 

the state-of-the-art, research gaps and open issues within 

continuous, discrete and hybrid co-simulation. (iii) 

Functional Mock-Up Interface (FMI). Since FMI is already 

widely used and it is a promising candidate to become the 

standard for industry and academia, a section with specific 

FMI related questions was designed. (iv) Questions related to 

an overall SWOT-AHP analysis of co-simulation.  

At this stage of the survey, the first round of interviews and 

the expert selection for the second round have both been 

completed; more than 40 experts have already committed to 

participate in the second round.  

4. PRELIMINARY RESULTS

In the first round of interviews, experts had to select three 

factors for the categories “Strengths”, “Weaknesses”, 

“Opportunities” and “Threats”. In the following, we present 

the results for the pre-selection of SWOT factors in 

hierarchical order.  

Strengths: (i) Every sub-system can be implemented in a 

tool that meets the particular requirements for the domain, the 

structure of the model and the simulation algorithm; (ii) 

cross-company cooperation is supported (e.g., suppliers and 

system integrators can exchange virtual "trial components" 

before signing contracts); (iii) every sub-system can be 

implemented in a tool that meets the particular requirements 

for the domain, the structure of the model and the simulation 

algorithm.  

Weaknesses: (i) Computational performance of co-

simulation compared to monolithic simulation; (ii) robustness 

of co-simulation compared to Monolithic simulation; (iii) 

licenses for all programs are required to couple different 

simulation programs.  

Opportunities: (i) Growing co-simulation community / 

growing industrial adoption; (ii) better communication 

between theoretical/numerical part, implementation and 

application/industry; (iii) user-friendly tools (pre-defined 

master algorithms, integrated error estimation, sophisticated 

analysis to determine best parameterization of solvers and 

master algorithm).  

Threats: (i) Insufficient knowledge/information of users in 

co-simulation may lead to improper use (e.g. wrong or 

missing error estimation, stability issues etc.); (ii) lack of 

exchange/cooperation between theoretical/numerical part, 

implementation and application/industry; (iii) incompatibility 

of different standards and co-simulation approaches. 
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1. INTRODUCTION

The field of multi-agents systems (MAS) is marked out by
various methods and approaches (Ren and Cao (2011)).
For formation control, graph theory (Mesbahi and Egerst-
edt (2010)) is a natural paradigm for systems with im-
perfect information coupled to agents’ dynamics, while
set-theoretic methods (Blanchini and Miani (2007)) are
suitable for addressing uncertainty and implementing con-
strained control for MAS (Nguyen (2016)). Intelligent con-
trol, including Artificial Intelligence (AI) and game theory
(Vrancx et al. (2007)) capabilities, is a way to investi-
gate individual behavior effects on collective processes.
Potential fields (Leonard and Fiorelli (2001)) are used for
formation tracking (Ren and Cao (2011)), but scarcely
used to the best of the authors’ knowledge for formation
producing.

In this context, this work is part of an educational project
on multi-agent systems for the analysis of the dynam-
ics of a swarm of mobile agents. This paper proposes a
framework for the optimization of adversarial potential-
based prey-predator-like problems. The adversarial po-
tentials are decomposed onto a basis set with different
weights. Each weight is individually optimized in a Particle
Swarm Optimization-like manner using a Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES). The first
contribution of this paper is related to the partitioning of
the potentials followed by a global cost function optimiza-
tion step, allowing for a topology-based, parameter-based
or constraint-based behavioral analysis of a MAS, in a
problem with multiple variables. The second contribution
is a proof of concept on a ”Cops & Robbers” case study,
relying both on optimization and environmental variables.

The paper is organized as follows. Section 2 introduces
the mathematical tools and methods. Section 3 presents
the considered scenario and assumptions, as well as an
analysis of the simulation results. Concluding results and
current work are drawn in Section 4.

Notation. Let x, y ∈ Rn. Their euclidean distance is
denoted by d(x, y) and the i-th component of x by x(i).

1 The authors acknowledge the support of the Research Professions
stream (Filière Métiers de la Recherche) of CentraleSupélec.

2. THEORETICAL BACKGROUND

The general framework of this paper considers interactions
between two adversarial teams of agents (teamA and team
B) evolving in an environment E ⊆ Rn, at speed vA and
vB resp., along with a set of objectives O. With respect to
a given objective function F , team A minimizes F and
team B minimizes the opposite objective function −F .
The behavior of both teams is achieved by optimizing a
potential field decomposed according to its sources.

2.1 Potential fields

A potential is a differentiable function U : E → R. Let
c ∈ A ∪ B be an agent. It generates a potential UAc
towards team A and a potential UBc towards team B. For
any objective o ∈ O there are similar potentials UAo , U

B
o .

Moreover, the borders of the ambient environment gener-
ate additional potentials UAE and UBE . By the principle of
superposition, any agent c ∈ C (where C is either A or B)
is thus subject to a potential of the form

Uc =
∑
a∈A

UCa +
∑
b∈B

UCb +
∑
o∈O

UCo + UCE (1)

In order to restrict the dimensionality of the problem, only
potentials of the following shape are allowed

U : x 7→
∑
k∈Z

uk · d(x, y)k, with y ∈ E (2)

where (uk)k∈Z is a finitely supported real sequence of
optimization parameters. The environment potential takes
into account the distance from x to the borders of the
environment (considered as a hyperrectangle parallel to
the x, y axes). In this setting, the environment potential
is a finite sum of terms of the shape

U : x 7→
∑
k∈Z

u
(i)
k |x

(i) − α|k (3)

for i ∈ J1, nK and some α ∈ R. The system starts from
arbitrary initial positions for the teams A and B and
evolves in a discrete time. At time t+ 1, each agent c ∈ C
(with C either A or B) is moving in the opposite direction
of the gradient −∇Uc at speed vC , with Uc computed at
time t. After a specified number of steps, or when it meets
a stopping criterion, the value of F is returned.
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2.2 Parameters optimization

For the proposed model, all the behavioral information is

contained into the parameters uk defined in (2) and u
(i)
k

defined in (3). A CMA-ES algorithm (Hansen (2007)) is
used to optimize the parameters regarding the objective
function F . CMA-ES is a stochastic optimization strategy
best applied to real functions of which only evaluations are
known (e.g. simulation results).

3. CASE STUDY

This section presents numerical simulations in a specific
case based on a true story (Williams (2015)). This case
study (Fig. 1) considers nA policemen drones (light blue
dots) and nB yakuzas drones (green dots), moving with
equal speeds in a rectangle defined by the 2 dark blue
dots. The yakuzas have 2 physical objectives (yellow dots):
one supply objective s (center) and 4 delivery objectives
d (sides). A delivery is a completion from s to d. Initially,
each yakuza seeks out objectives d. If it reaches a d, the
new objective becomes s. If it reaches s, it seeks objectives
d again. A yakuza is removed from the simulation if
it encounters a policeman. Any drone colliding with a
rectangle border is also removed. The objective function
F is the total number of deliveries made by the yakuzas
during the simulation.

Fig. 1. Extract of a Matlab simulation (nA = 4, nB = 8)

Policemen have no information about the yakuzas’ ob-
jectives. The potentials are decomposed on the basis
described in (1) and (3) restricted to the powers k ∈
{−2,−1} for computational reasons. This leads to 14 pa-
rameters entering the CMA-ES algorithm, which are then
optimized regarding a single team’s objective function. A
video illustration of the simulation results is provided at
www.youtube.com/watch?v=GscU1e3sc04.

Repulsive interaction corresponds to uk > 0, while uk < 0
yields an attractive interaction. The potential coefficients
corresponding to k = −1 are associated to a long-range
interaction. The long-range attractive potential of the
objectives is observed to be larger than the other long-
range potentials. The k = −2 coefficients (corresponding
to a short-range action) are displayed in Fig 2, for a
number of policemen nA = 4. Each plot represents the uk
parameter of a component of the potential UB, according
to (1)-(3). Three phases are identified. After a highly
non-beneficial situation for a single yakuza, the behavior
becomes strongly objective-oriented for nB > 2 (i.e. u−2
of the objectives goes to the normalized value −1 in Fig.

2). A drastic behavior change can be seen from nB ≈ 6:
for more yakuzas, the winning strategy goes from full
to mitigated inter-yakuza and yakuza-policemen repulsion
(the blue and orange curves scale down towards 0 in Fig.
2). This can be understood as a trade-off between safety at
low nB and high-pay risk from collective action inducing
easier workaround at higher nB. The borders intuitively
remain strongly repulsive all along.

Fig. 2. Team B potential coefficients uk w.r.t. nB yakuzas

4. CONCLUSION AND FUTURE WORK

This paper proposed a potential-based framework using a
decomposition basis for the optimization of the behaviors
in a prey-predator-like problem. The simulation results
highlighted a change of strategy for different numbers of
agents in a ”Cops & Robbers” scenario.

Future investigations on the F (nA, nB) map will define
the advantage regions for each team. Analyzing the op-
timized behaviors from a refined model could unveil new
strategies and confirm existing ones: by allowing new envi-
ronment topologies (e.g. objectives numbers and locations,
obstacles), by allowing lower k-values or by implementing
adversarial optimization.
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